We previously reported that inhibition of SVH-B, a specific splicing variant of SVH, results in apoptotic cell death. In this study, we reveal that this apoptosis may be dependent on the presence of p53. Co-immunoprecipitation and GST pull-down assays have demonstrated that SVH-B directly interacts with p53. In both BEL-7404 cells and p53-null Saos-2 cells transfected with a temperature-sensitive mutant of p53, V143A, ectopically expressed SVH-B suppresses the transcriptional activity of p53, and suppression of SVH by RNA interference increases the transcriptional activity of p53. Our results suggested the function of SVH-B in accelerating growth and inhibition of apoptosis is related to its inhibitory binding to p53.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2007.09.025 | DOI Listing |
Pest Manag Sci
January 2025
College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
Background: The entomopathogenic fungus Beauveria bassiana has been widely used for pest biocontrol with conidia serving as the main active agents. Conidial yield and quality are two important characteristics in fungal conidia development, however, the regulatory mechanisms that orchestrate conidial formation and development are not well understood.
Results: In this study, we identified a ZnCys transcription factor BbCDR1 that inhibits conidial production while promoting conidial maturation.
Physiol Plant
January 2025
Key Laboratory of Fruit Postharvest Biology, Liaoning Province; College of Horticulture, Shenyang Agricultural University, Shenyang, China.
Stone cells are one of the limiting factors affecting pear fruit quality and commodity value. The formation of stone cell is highly correlated with lignin deposition. However, the molecular mechanism of stone cell formation and regulation is still unclear.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.
In the coevolutionary process between plant pathogens and hosts, pathogen effectors, primarily proteinaceous, engage in interactions with host proteins, such as plant transcription factors (TFs), during the infection process. This review delves into the intricate interplay between TFs and effectors, a key aspect in the prolonged and complex battle between plants and pathogens. Effectors strategically manipulate TFs using diverse tactics.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Biology and Biochemistry PhD Programs, Graduate Center, City University of New York, New York, New York, United States.
Purpose: Retinal development in the mouse continues past birth and provides a widely used model system in which photoreceptor formation can be observed and manipulated. This experimental paradigm provides opportunities for both gain-of-function and loss-of-function studies, which can be accomplished through in vivo or ex vivo plasmid delivery and electroporation. However, the cis-regulatory elements used to implement this approach have not been fully evaluated or optimized for the unique transcriptional environment of photoreceptors.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!