Molecular mechanisms underlying the different capacity of two in vivo selected human melanoma cell variants to form experimental metastases were studied. The doubling times of the FEMX-I and FEMX-V cell sublines in vitro were 15 and 25 h, respectively. The invasive capacity of FEMX-I cells was 8-fold higher than FEMX-V cells, and the time to form approximately 10 mm s.c. tumors in nude mice was 21 versus 35 days. FEMX-I displayed a spindle-like formation in vitro, whereas FEMX-V cells had a rounded shape. Hence, we examined known determinants of cell shape and proliferation, the small GTPases. The four studied showed equal expression in both cell types, but Rac1 activity was significantly decreased in FEMX-V cells. Rac1 stimulates NFkappaB, and we found that endogenous NFkappaB activity of FEMX-V cells was 2% of that of FEMX-I cells. Inhibition of Rac1 resulted in blocked NFkappaB activity. Specific inhibition of either Rac1 or NFkappaB significantly reduced proliferation and invasion of FEMX-I cells, the more pronounced effects observed with Rac1 inhibition. These data indicate that Rac1 activity in FEMX cells regulates cell proliferation and invasion, in part via its effect on NFkappaB, signifying Rac1 as a key molecule in melanoma progression and metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2007.08.017DOI Listing

Publication Analysis

Top Keywords

femx-v cells
16
rac1 activity
12
femx-i cells
12
rac1
8
cells
8
nfkappab activity
8
inhibition rac1
8
proliferation invasion
8
cell
5
femx-i
5

Similar Publications

Molecular mechanisms underlying the different capacity of two in vivo selected human melanoma cell variants to form experimental metastases were studied. The doubling times of the FEMX-I and FEMX-V cell sublines in vitro were 15 and 25 h, respectively. The invasive capacity of FEMX-I cells was 8-fold higher than FEMX-V cells, and the time to form approximately 10 mm s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!