A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coherent psychometric modelling with Bayesian nonparametrics. | LitMetric

Coherent psychometric modelling with Bayesian nonparametrics.

Br J Math Stat Psychol

College of Education, University of Illinosis-Chicago, 60607, USA.

Published: February 2009

In this paper we argue that model selection, as commonly practised in psychometrics, violates certain principles of coherence. On the other hand, we show that Bayesian nonparametrics provides a coherent basis for model selection, through the use of a 'nonparametric' prior distribution that has a large support on the space of sampling distributions. We illustrate model selection under the Bayesian nonparametric approach, through the analysis of real questionnaire data. Also, we present ways to use the Bayesian nonparametric framework to define very flexible psychometric models, through the specification of a nonparametric prior distribution that supports all distribution functions for the inverse link, including the standard logistic distribution functions. The Bayesian nonparametric approach provides a coherent method for model selection that can be applied to any statistical model, including psychometric models. Moreover, under a 'non-informative' choice of nonparametric prior, the Bayesian nonparametric approach is easy to apply, and selects the model that maximizes the log likelihood. Thus, under this choice of prior, the approach can be extended to non-Bayesian settings where the parameters of the competing models are estimated by likelihood maximization, and it can be used with any psychometric software package that routinely reports the model log likelihood.

Download full-text PDF

Source
http://dx.doi.org/10.1348/000711007X246237DOI Listing

Publication Analysis

Top Keywords

model selection
16
bayesian nonparametric
16
nonparametric approach
12
bayesian nonparametrics
8
prior distribution
8
psychometric models
8
nonparametric prior
8
distribution functions
8
log likelihood
8
model
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!