Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We consider the shadow system of the Gierer-Meinhardt system in a smooth bounded domain Omega subset R(N),A(t)=epsilon(2)DeltaA-A+A(p)/xi(q),x is element of Omega, t>0, tau/Omega/xi(t)=-/Omega/xi+1/xi(s) integral(Omega)A(r)dx, t>0 with the Robin boundary condition epsilon partial differentialA/partial differentialnu+a(A)A=0, x is element of partial differentialOmega, where a(A)>0, the reaction rates (p,q,r,s) satisfy 1
0, r>0, s>or=0, 1 1 and tau sufficiently small the interior spike is stable. (ii) For N=1 if r=2 and 1 1 such that for a is element of (a(0),1) and mu=2q/(s+1)(p-1) is element of (1,mu(0)) the near-boundary spike solution is unstable. This instability is not present for the Neumann boundary condition but only arises for the Robin boundary condition. Furthermore, we show that the corresponding eigenvalue is of order O(1) as epsilon-->0.
Download full-text PDF
Source
http://dx.doi.org/10.1063/1.2768156 DOI Listing Publication Analysis
Top Keywords
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!