The ablation of metal surfaces in the presence of a precursor gas produces reaction products which are often difficult to predict and highly dependent on ablation conditions. This article describes the successful development and implementation of a laser ablation source-equipped Fourier transform microwave spectrometer capable of observing 4 GHz regions of spectra in a single data acquisition event. The dramatically increased speed with which regions may be searched, when compared to other high resolution microwave techniques, allows the source conditions to be the prime variable in laser ablation microwave spectroscopic studies. A second feature of the technique is that observed spectral features have correct relative intensities. This is advantageous when assigning observed spectra. The study of two metal chlorides, AgCl and AuCl, illustrate the instrument's benefits.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2786022DOI Listing

Publication Analysis

Top Keywords

laser ablation
12
fourier transform
8
transform microwave
8
microwave spectrometer
8
ablation
5
search accelerated
4
accelerated correct
4
correct intensity
4
intensity fourier
4
microwave
4

Similar Publications

This study investigates the ablation performance of Inconel 718, a nickel-based superalloy, and metal matrix polycrystalline diamond (MMPCD), a super composite, using a nano-second (ns) pulsed laser across a range of ablation conditions. Single trenches varying in energy fluence and scanning speeds were created, analyzing the experimental responses in terms of ablation rate and surface roughness. Using regression techniques, models were developed to understand these relationships.

View Article and Find Full Text PDF

Small-scale continuum robots hold promise for interventional diagnosis and treatment, yet existing models struggle to achieve small size, precise steering, and visualized functional treatment simultaneously, termed an "impossible trinity". This study introduces an optical fiber-based continuum robot integrated imaging, high-precision motion, and multifunctional operation abilities at submillimeter-scale. With a slim profile of 0.

View Article and Find Full Text PDF

Successful Multi-Modal Laser Intervention and Histopathological Evaluation of Multiple Glomangiomas.

Lasers Surg Med

December 2024

Department of Dermatology, Veterans Health Administration, San Antonio, Texas, USA.

Objectives: Glomangiomas are benign vascular malformations that exist within the spectrum of glomuvenous malformations which consist of varying amounts of glomus cells, vascular spaces, and smooth muscle. Glomangiomas are often treated due to associated pain, particularly when located on pressure areas such as the back or extensor surfaces, which can cause difficulty with certain activities and occupational functions. Histologically glomangiomas consist of prominent dilated vascular spaces lined by glomus cells typically situated in the deep-dermis to subcutaneous fat which limits treatment to modalities capable of reaching the depth of the tumor including excision, sclerotherapy, and laser therapy.

View Article and Find Full Text PDF

Introduction: The presence of wounds in addition to the excision-induced wounds after severance from the stock plants is known to positively influence adventitious root formation of woody plant cuttings. Previous morphological studies highlighted laser wounding as a technique allowing to precisely control the decisive ablation depth. However, the biochemical processes involved in the response of rooting to the additional wounding remained unexplored.

View Article and Find Full Text PDF

A 63-year-old woman undergoing peritoneal dialysis (PD) presented to our hospital with abdominal pain, diarrhea, and cloudy PD effluent. An elevated white blood cell count in the PD effluent led to a diagnosis of PD-associated peritonitis. She was subsequently started on intraperitoneal cefazolin and ceftazidime, after which her condition improved rapidly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!