The series of polyynes with the structure trans, trans-[Ar-Pt(P 2)-(C[triple bond]C) n -Pt(P 2)-Ar], where P = tri( p-tolyl)phosphine, Ar = p-tolyl, and n = 3, 4, 5, 6 (6, 8, 10, 12 sp carbon atoms), has been subjected to a comprehensive photophysical investigation. At low temperature ( T < 140 K) in a 2-methyltetrahydrofuran (MTHF) glass, the complexes exhibit moderately efficient phosphorescence appearing as a series of narrow (fwhm < 200 cm (-1)) vibronic bands separated by ca. 2100 cm (-1). The emission is assigned to a (3)pi,pi* triplet state that is concentrated on the sp carbon chain, and the vibronic progression arises from coupling of the excitation to the -C[triple bond]C- stretch. The 0-0 energy of the phosphorescence decreases with increasing sp carbon chain length, spanning a range of over 6000 cm (-1) across the series. Transient absorption spectroscopy carried out at ambient temperature confirms that the (3)pi,pi* triplet is produced efficiently, and it displays a strongly allowed triplet-triplet absorption. In the MTHF solvent glass ( T < 140 K), the emission lifetimes increase with emission energy. Analysis of the triplet nonradiative decay rates reveals a quantitative energy gap law correlation. The nonradiative decay rates can be calculated by using parameters recovered from a single-mode Franck-Condon fit of the emission spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic701220tDOI Listing

Publication Analysis

Top Keywords

chain length
8
triplet state
8
3pipi* triplet
8
carbon chain
8
nonradiative decay
8
decay rates
8
photophysics diplatinum
4
diplatinum polyynediyl
4
polyynediyl oligomers
4
oligomers chain
4

Similar Publications

Background: There is ample evidence showing the development of nystatin-resistant strains in patients undergoing malignancy treatment. Amphotericin B is a polyene antifungal drug that combines with ergosterol to cause cell death and is more effective on fungal species than routine antifungals such as nystatin. This study aimed to compare the effect of nystatin and amphotericin B on fungal species isolated from patients before and during head-and-neck radiotherapy.

View Article and Find Full Text PDF

Objectives: The study investigates the association of single nucleotide polymorphisms (SNP) in resistin gene (RETN) with resistin level, insulin resistance, and the risk of type 2 diabetes in an early diagnosed type 2 diabetic population of Iran.

Methods: The total of 80 healthy subjects and 80 individuals diagnosed with type 2 diabetes. To ascertain the genotypes of rs1862513 and rs3745367, we performed the polymerase chain reaction with restriction fragment length polymorphism (PCR-RFLP) technique.

View Article and Find Full Text PDF

Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).

View Article and Find Full Text PDF

Self-assembly of nanoparticles (NPs) in solution has garnered tremendous attention among researchers because of their electrical, chemical, and optoelectronic properties at the macroscale with potential applications in bio-imaging, bio-medicine, and therapeutics. Control of size, shape, and composition at the nanoscale is important in tuning the material's bulk properties. The grafting of NPs with polymers enables us to tune such bulk material properties at the nano level by controlling their assemblies, especially in solutions.

View Article and Find Full Text PDF

We are facing a shortage of new antibiotics to fight against increasingly resistant bacteria. As an alternative to conventional small molecule antibiotics, antimicrobial polymers (AMPs) have great potential. These polymers contain cationic and hydrophobic groups and disrupt bacterial cell membranes through a combination of electrostatic and hydrophobic interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!