Correct technique for using aerosol inhaler devices.

Nurs Stand

Education for Health, Warwick.

Published: November 2007

Using an inhaler device correctly is essential to ensure that patients receive maximum benefit from their prescribed medication. The most effective inhaler device is one that the individual patient can and continues to use to deliver the right amount of medication consistently. This article discusses the key points to consider when using aerosol inhalers.

Download full-text PDF

Source
http://dx.doi.org/10.7748/ns2007.09.21.52.38.c6594DOI Listing

Publication Analysis

Top Keywords

inhaler device
8
correct technique
4
technique aerosol
4
aerosol inhaler
4
inhaler devices
4
devices inhaler
4
device correctly
4
correctly essential
4
essential ensure
4
ensure patients
4

Similar Publications

Background: Oxygen therapy is critical and vital treatment for hypoxemia and respiratory distress, however, access to reliable oxygen systems remains limited in SSA. Despite WHO initiatives that distributed over 30,000 OC oxygen concentrators worldwide, SSA faces significant challenges related to their maintenance and use, due to harsh environmental conditions, technical skill shortages and inadequate infrastructure. This review aims to systematically identify and assess the literature on OC design adaptations, maintenance challenges, and knowledge gaps in SSA, providing actionable recommendations to inform innovative and context-sensitive solutions to improve healthcare delivery in the region.

View Article and Find Full Text PDF

Programmable scanning diffuse speckle contrast imaging of cerebral blood flow.

Neurophotonics

January 2025

University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States.

Significance: Cerebral blood flow (CBF) imaging is crucial for diagnosing cerebrovascular diseases. However, existing large neuroimaging techniques with high cost, low sampling rate, and poor mobility make them unsuitable for continuous and longitudinal CBF monitoring at the bedside.

Aim: We aimed to develop a low-cost, portable, programmable scanning diffuse speckle contrast imaging (PS-DSCI) technology for fast, high-density, and depth-sensitive imaging of CBF in rodents.

View Article and Find Full Text PDF

Development of nebulized inhalation delivery for fusion-inhibitory lipopeptides to protect non-human primates against Nipah-Bangladesh infection.

Antiviral Res

January 2025

CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France.

Nipah virus (NiV) is a lethal zoonotic paramyxovirus that can be transmitted from person to person through the respiratory route. There are currently no licensed vaccines or therapeutics. A lipopeptide-based fusion inhibitor was developed and previously evaluated for efficacy against the NiV-Malaysia strain.

View Article and Find Full Text PDF

Advances in Electrochemical Nitrite Reduction toward Nitric Oxide Synthesis for Biomedical Applications.

Adv Healthc Mater

January 2025

Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.

Nitric oxide (NO) is an essential molecule in biomedicine, recognized for its antibacterial properties, neuronal modulation, and use in inhalation therapies. The effectiveness of NO-based treatments relies on precise control of NO concentrations tailored to specific therapeutic needs. Electrochemical generation of NO (E-NOgen) via nitrite (NO ) reduction offers a scalable and efficient route for controlled NO production, while also addressing environmental concerns by reducing NO pollution and maintaining nitrogen cycle balance.

View Article and Find Full Text PDF

/: Inhaler devices have been developed for the effective delivery of inhaled medications used in the treatment of pulmonary diseases. However, differing operating procedures across the devices can lead to user errors and reduce treatment efficacy, especially when patients use multiple devices simultaneously. To address this, we developed a novel dry powder inhaler (DPI), combining fluticasone propionate (FP), salmeterol xinafoate (SX), and tiotropium bromide (TB) into a single device designed for bioequivalent delivery compared to existing commercial products in an animal model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!