Corrugated Waveguide and Directional Coupler for CW 250-GHz Gyrotron DNP Experiments.

IEEE Trans Microw Theory Tech

P. P. Woskov, M. K. Hornstein, and R. J. Temkin are with the Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: ; ; ). V. S. Bajaj and R. G. Griffin are with the Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: ; ).

Published: June 2005

A 250-GHz corrugated transmission line with a directional coupler for forward and backward power monitoring has been constructed and tested for use with a 25-W continuous-wave gyrotron for dynamic nuclear polarization (DNP) experiments. The main corrugated line (22-mm internal diameter, 2.4-m long) connects the gyrotron output to the DNP probe input. The directional coupler, inserted approximately midway, is a four-port crossed waveguide beamsplitter design. Two beamsplitters, a quartz plate and ten-wire array, were tested with output coupling of 2.5% (-16 dB) at 250.6 GHz and 1.6% (-18 dB), respectively. A pair of mirrors in the DNP probe transferred the gyrotron beam from the 22-mm waveguide to an 8-mm helically corrugated waveguide for transmission through the final 0.58-m distance inside the NMR magnet to the sample. The transmission-line components were all cold tested with a 248 ± 4-GHz radiometer. A total insertion loss of 0.8 dB was achieved for HE(11) -mode propagation from the gyrotron to the sample with only 1% insertion loss for the 22-mm-diameter waveguide. A clean Gaussian gyrotron beam at the waveguide output and reliable forward power monitoring were achieved for many hours of continuous operation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1994931PMC
http://dx.doi.org/10.1109/TMTT.2005.848097DOI Listing

Publication Analysis

Top Keywords

directional coupler
12
corrugated waveguide
8
dnp experiments
8
power monitoring
8
dnp probe
8
gyrotron beam
8
insertion loss
8
gyrotron
6
waveguide
5
corrugated
4

Similar Publications

We introduce a novel material for integrated photonics and investigate aluminum gallium nitride (AlGaN) on aluminum nitride (AlN) templates as a platform for developing reconfigurable and on-chip nonlinear optical devices. AlGaN combines compatibility with standard photonic fabrication technologies and high electro-optic modulation capabilities with low loss over a broad spectral range, from UVC to long-wave infrared, making it a viable material for complex photonic applications. In this work, we design and grow AlGaN/AlN heterostructures and integrate several photonic components.

View Article and Find Full Text PDF

Exceptional points facilitate peculiar dynamics in non-Hermitian systems. Yet, in photonics, they have mainly been studied in the classical realm. In this work, we reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.

View Article and Find Full Text PDF

With careful design and integration, microring resonators can serve as a promising foundation for developing compact and scalable sources of non-classical light for quantum information processing. However, the current design flow is hindered by computational challenges and a complex, high-dimensional parameter space with interdependent variables. In this work, we present a knowledge-integrated machine learning framework based on Bayesian Optimization for designing squeezed light sources using microring resonators.

View Article and Find Full Text PDF

Grating-assisted, contra-directional couplers (GA-CDCs), owing to their four-port operations, can offer several important advantages over traditional, single waveguide-based Bragg gratings. However, how to flexibly design the spectral responses of GA-CDCs has been much less studied. We report the spectral tailoring methodology of GA-CDCs to achieve arbitrary, physically realizable, complex spectral responses.

View Article and Find Full Text PDF

Asymmetric bi-level dual-core mode converter for high-efficiency and polarization-insensitive O-band fiber-chip edge coupling: breaking the critical size limitation.

Nanophotonics

September 2024

State Key Laboratory for Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Center for Optical & Electromagnetic Research, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.

Efficient coupling between optical fibers and on-chip photonic waveguides has long been a crucial issue for photonic chips used in various applications. Edge couplers (ECs) based on an inverse taper have seen widespread utilization due to their intrinsic broadband operation. However, it still remains a big challenge to realize polarization-insensitive low-loss ECs working at the O-band (1,260-1,360 nm), mainly due to the strong polarization dependence of the mode coupling/conversion and the difficulty to fabricate the taper tip with an ultra-small feature size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!