The beta-adrenergic receptor/cyclic AMP/protein kinase A (PKA) signalling pathway regulates heart rate and contractility. Here, we identified a supramolecular complex consisting of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2), its negative regulator phospholamban (PLN), the A-kinase anchoring protein AKAP18delta and PKA. We show that AKAP18delta acts as a scaffold that coordinates PKA phosphorylation of PLN and the adrenergic effect on Ca(2+) re-uptake. Inhibition of the compartmentalization of this cAMP signalling complex by specific molecular disruptors interferes with the phosphorylation of PLN. This prevents the subsequent release of PLN from SERCA2, thereby affecting the Ca(2+) re-uptake into the sarcoplasmic reticulum induced by adrenergic stimuli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2247390 | PMC |
http://dx.doi.org/10.1038/sj.embor.7401081 | DOI Listing |
Neuroscience
December 2024
Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, New Zealand; Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Ireland. Electronic address:
Alzheimer's disease (AD) is a growing health problem worldwide, particularly in the developed world due to an ageing population. Glutamate excitotoxicity plays a major role in the pathophysiology of AD, and glutamate re-uptake is controlled by excitatory amino acid transporters (EAATs). The EAAT2 isoform is the predominant transporter involved in glutamate reuptake, therefore EAAT1 has not been the focus of AD research.
View Article and Find Full Text PDFCell Host Microbe
November 2024
College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China. Electronic address:
Polyunsaturated fatty acids (PUFAs) are dietary components participating in neurotransmission and cell signaling. Pollen is a source of PUFAs for honeybees, and disruptions in dietary PUFAs reduce the cognitive performance of honeybees. We reveal that gut bacteria of honeybees contribute to fatty acid metabolism, impacting reward learning.
View Article and Find Full Text PDFCardiovasc Res
March 2024
Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany.
Aims: Despite massive efforts, we remain far behind in our attempts to identify effective therapies to treat heart failure with preserved ejection fraction (HFpEF). Diastolic function is critically regulated by sarcoplasmic/endoplasmic reticulum (SR) calcium ATPase 2a (SERCA2a), which forms a functional cardiomyocyte (CM) microdomain where 3',5'-cyclic adenosine monophosphate (cAMP) produced upon β-adrenergic receptor (β-AR) stimulation leads to phospholamban (PLN) phosphorylation and facilitated Ca2+ re-uptake.
Methods And Results: To visualize real-time cAMP dynamics in the direct vicinity of SERCA2a in healthy and diseased myocytes, we generated a novel mouse model on the leprdb background that stably expresses the Epac1-PLN Förster resonance energy transfer biosensor.
Mol Cell Biochem
January 2024
Department of Physiology, Wayne State University, Detroit, MI, 48201, USA.
The importance of sarcoplasmic reticulum (SR) Ca-handling in heart has led to detailed understanding of Ca-release and re-uptake protein complexes, while less is known about other endoplasmic reticulum (ER) functions in the heart. To more fully understand cardiac SR and ER functions, we analyzed cardiac microsomes based on their increased density through the actions of the SR Ca-ATPase (SERCA) and the ryanodine receptor that are highly active in cardiomyocytes. Crude cardiac microsomal vesicles loaded with Ca oxalate produced two higher density subfractions, MedSR and HighSR.
View Article and Find Full Text PDFNat Commun
February 2023
Center for Reproductive Medicine, Shandong University, 250012, Jinan, Shandong, China.
Impaired insulin secretion is a hallmark in type 2 diabetes mellitus (T2DM). THADA has been identified as a candidate gene for T2DM, but its role in glucose homeostasis remains elusive. Here we report that THADA is strongly activated in human and mouse islets of T2DM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!