Aging is associated with a reduction in metabolic function, insulin resistance, increased incidence of neurodegenerative diseases, and memory or cognitive dysfunction. In aging females, loss of gonadal function determines the beginning of the period of reduced metabolic function. Estrogens have neuroprotective effects, but the mechanisms by which they exert these effects remain unclear. The effects of estradiol treatment on the activation of the insulin receptor substrate (IRS)-1 signaling pathway, the interactions between estrogen receptor (ER)-alpha and IRS-1 and the p85alpha subunit of phosphatidylinositol-3 kinase, together with the possible effects of estradiol treatment on glucose transporter-3 and -4 levels, were investigated in female rats. The level of expression of each glucose transporter was greater in control and estradiol-treated groups than in the ovariectomized group. Interactions of ERalpha46-IRS-1, ERalpha46-p85alpha, and p85alpha-IRS-1, as well as IRS-1 phosphorylation, appeared to increase with estradiol treatment. The results indicate that estradiol treatment improves some aspects of neuronal homeostasis that are affected by aging; this may indicate that estradiol has neuroprotective effects in female rats. Additional animal studies are required to clarify the neuroprotective role of estradiol in relation to other important molecules involved in the IRS-1-phosphatidylinositol-3 kinase signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2007-0627DOI Listing

Publication Analysis

Top Keywords

estradiol treatment
20
female rats
12
treatment improves
8
homeostasis aging
8
metabolic function
8
neuroprotective effects
8
effects estradiol
8
signaling pathway
8
indicate estradiol
8
estradiol
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!