Lability of polycyclic aromatic hydrocarbons in the rhizosphere.

Chemosphere

School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA.

Published: February 2008

Remediation of soils containing high concentrations of polycyclic aromatic hydrocarbons (PAHs) seldom results in complete removal of contaminants, but residual toxicity often is reduced. In this study, soil from a former manufactured gas plant site was treated for 12 months by phytoremediation and then tested for total PAHs, Tenax-TA extractable ("labile") PAHs, aqueous soluble PAHs (PAH(wp)) , and biotoxicity assessed by earthworms survival, nematode mortality, emergence of lettuce seedlings, and microbial respiration. Prior to phytoremediation, the soil had toxic impacts on all bioassays (except the nematodes), and 12 months of remediation decreased this response. Change in labile PAHs was a predictor for change in total PAH for 3- and 4-ring compounds but not for the 5- and 6-ring. Decreases in labile PAHs were correlated (r(2)>or=0.80) with toxicity in the bioassays except microbial respiration. PAH(wp) was correlated only with nematode toxicity prior to remediation but with none of the tests after remediation. Total PAHs were not correlated with any of the bioassay tests. Tenax-TA appears to have potential for predicting residual toxicity in remediated soils and is superior to total concentrations for that application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2007.07.057DOI Listing

Publication Analysis

Top Keywords

polycyclic aromatic
8
aromatic hydrocarbons
8
residual toxicity
8
total pahs
8
microbial respiration
8
labile pahs
8
pahs correlated
8
pahs
7
lability polycyclic
4
hydrocarbons rhizosphere
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!