On the structural diversity of sialoliths.

Microsc Microanal

Department of Biomaterials/ITB, Dental Medical School, University of Lisbon, 1649-003 Lisbon, Portugal.

Published: October 2007

Sialoliths from parotid and submaxillar glands have been characterized. Fractured and polished surfaces revealed an intrinsic structural diversity across the calculi sections. In general, the calculi presented highly mineralized amorphous-looking cores surrounded by concentric alternating mineralized and organic layers. The thickness of these layers decreased from the outer regions toward the center of the sialolith, illustrating a sequence of growth stages. Nevertheless, a significant variability could be detected among the specimens. In some cases, the calculi displayed multiple cores and lacked concentric laminated structures. In other instances, the specimens exhibited extensive regions of globular structures. In these cases, the globule diameter decreased across the radius toward the center of the sialoliths, and the globular structures tended to reorganize, forming bright and dark laminated layers surrounding the core. The participation of globular structures in the layer formation process points to morphogenetic mechanisms not previously described.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927607070754DOI Listing

Publication Analysis

Top Keywords

globular structures
12
structural diversity
8
diversity sialoliths
4
sialoliths sialoliths
4
sialoliths parotid
4
parotid submaxillar
4
submaxillar glands
4
glands characterized
4
characterized fractured
4
fractured polished
4

Similar Publications

Recent advances in nutraceutical delivery systems constructed by protein-polysaccharide complexes: A systematic review.

Compr Rev Food Sci Food Saf

January 2025

State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.

Most nutraceuticals have low stability and solubility, making it difficult to achieve ideal bioavailability by directly incorporating into food. Therefore, constructing delivery systems to protect nutraceuticals is an essential strategy. Proteins and polysaccharides have become ideal materials for encapsulating nutraceuticals due to their superior nutritional value, edible safety, and physicochemical properties.

View Article and Find Full Text PDF

This study evaluated the properties of lentil protein, pea protein, quinoa protein, and soy protein as natural nanoparticle stabilizers and their interactions with pectin and chitin nanofiber in preparing high internal phase Pickering emulsions (HIPPEs). The globular plant proteins interact with polysaccharides through hydrogen bonding and electrostatic interactions, transforming the structure into complex morphologies, including fibrous and elliptical shapes. These complex nanoparticles exhibited enhanced thermal decomposition stability, and the HIPPEs constructed by them demonstrated significantly improved apparent viscosity and elastic modulus, with a yield stress of 931.

View Article and Find Full Text PDF

Identifying facile strategies for hierarchically structuring crystalline porous materials is critical for realizing diffusion length scales suitable for broad applications. Here, we elucidate synthesis-structure-function relations governing how room temperature catalytic conditions can be exploited to tune covalent organic framework (COF) growth and thereby access unique hierarchical morphologies without the need to introduce secondary templates or structure directing molecules. Specifically, we demonstrate how scandium triflate, an efficient catalyst involved in the synthesis of imine-based COFs, can be exploited as an effective growth modifier capable of selectively titrating terminal amines on 2D COF layers to facilitate anisotropic crystal growth.

View Article and Find Full Text PDF

A comprehensive strategy, including spectroscopic, molecular simulation, proteomics, and bioinformatics techniques, was employed to investigate a novel triazole, 5-(4-methoxyphenyl)-1-phenyl-1H-1,2,3-triazole, its interactions with high-abundance blood proteins, and identification of low-abundance proteins. The binding constants and thermodynamic parameters of the triazole to two high-abundance blood globular proteins, human serum albumin, and human immunoglobulin G (HIgG), were obtained by spectroscopic techniques and computational chemistry. The two-dimensional gel electrophoresis in combination with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed to isolate and identify differentially expressed low-abundance proteins in human blood serum samples following exposure to the triazole.

View Article and Find Full Text PDF

AlphaFold and what is next: bridging functional, systems and structural biology.

Expert Rev Proteomics

January 2025

Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Saudi Arabia.

Introduction: The DeepMind's AlphaFold (AF) has revolutionized biomedical research by providing both experts and non-experts with an invaluable tool for predicting protein structures. However, while AF is highly effective for predicting structures of rigid and globular proteins, it is not able to fully capture the dynamics, conformational variability, and interactions of proteins with ligands and other biomacromolecules.

Areas Covered: In this review, we present a comprehensive overview of the latest advancements in 3D model predictions for biomacromolecules using AF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!