In 1930, Bortels showed that molybdenum is necessary for nitrogen fixation in Acetobacter, and in 1939 Arnon and Stout reported that molybdenum is essential for life in higher plants. Nitrogenase is the nitrogen-fixing enzyme complex, while nitrate reductase requires molybdenum for its activity. Molybdenum occurs in the earth crust with an abundance of 1.0-1.4 mg/kg. The molybdenum content of the vegetation is determined by the amount of this element in the soil and its pH-value. The weathering soils of granite, porphyry, gneiss and Rotliegendes produce a molybdenum-rich vegetation. Significantly poorer in Mo is the vegetation on loess, diluvial sands, alluvial riverside soils and especially on Keuper and Muschelkalk weathering soils, which produce legumes and, e.g. cauliflower with molybdenum deficiency symptoms. The molybdenum content of the flora decreases with increasing age. Legumes store the highest molybdenum levels in the bulbs of their roots; on average, they accumulate more molybdenum than herbs and grasses do. The danger of molybdenum toxicity in plants is small.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1556/ABiol.58.2007.3.7 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
Iridium is used in commercial light-emitting devices and in photocatalysis but is among the rarest stable chemical elements. Therefore, replacing iridium(III) in photoactive molecular complexes with abundant metals is of great interest. First-row transition metals generally tend to yield poorer luminescence behavior, and it remains difficult to obtain excited states with redox properties that exceed those of noble-metal-based photocatalysts.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Engineering, Westlake University, Hangzhou, 310030, China.
The epitaxial growth of molybdenum disulfide (MoS₂) on sapphire substrates enables the formation of single-crystalline monolayer MoS₂ with exceptional material properties on a wafer scale. Despite this achievement, the underlying growth mechanisms remain a subject of debate. The epitaxial interface is critical for understanding these mechanisms, yet its exact atomic configuration has previously been unclear.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China.
Defining the active sites and further optimizing their activity are of great significance for enhancing the hydrogen evolution reaction (HER) performances, especially for inexpensive Ni-based catalysts doped with metals and nonmetal elements. This work reports the role of the incorporated molybdenum and sulfur in enhancing the HER activity of nickel. The prepared molybdenum and sulfur coincorporated Ni (NMS) electrocatalysts exhibit excellent HER performance, with an overpotential and Tafel slope of 77.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
Previous researchers have conducted extensive investigations on the impact of various working conditions on fatigue damage. However, further research is still needed to understand the underlying mechanism of how the excitation frequency of cyclic loading affects the fatigue life. This article systematically discloses the phononic origin of atomic scale fatigue resonance, focusing on single-layer molybdenum disulfide (SL MoS) as a prototypical material.
View Article and Find Full Text PDFNano Lett
January 2025
School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
Layered VO·6HO is a promising candidate for aqueous zinc batteries (AZBs) but with moderate electrochemical performances. Herein, the charge storage properties of VO·6HO are markedly improved by building up the heterointerface on its surface using amorphous molybdenum trioxide as the heteromaterial. The amorphous molybdenum trioxide functioning as the proton reservoir enables the proton-involved electrochemical reactions and induces the formation of a built-in electric field along the [001] orientation at the heterointerface constructed by the (001) plane of VO·6HO, which could provide new diffusion pathways and extra sites for ion storage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!