Although a rise in intracellular calcium concentration of vertebrate oocytes plays a pivotal role for the initiation of fertilization or oocyte activation, no study on this subject has been reported in birds. This study was conducted to study the role of intracellular calcium in relation to fertilization in avian oocytes. First, immediately after a quail oocyte was injected with a sperm, it was treated with strontium chloride as an inducer for intracellular calcium rise at doses of 0, 2.5, 5, 7.5, 10 mM for 4 hr in the culture medium and was followed by 20-hr culture. Treatment with 5 mM of strontium chloride induced blastodermal development in 24.2% of injected eggs, although no oocytes developed without strontium treatment. Second, quail oocytes were injected with a sperm and 0.1 M calcium chloride or a sperm and saline solution, cultured without calcium for 4 hr and was followed by 20-hr culture without strontium. The calcium solution induced blastodermal development in 20.5% of the oocytes, although no oocytes developed without calcium treatment. Third, quail oocytes were injected with 1,2-bis (o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA) as a calcium chelator, cultured with strontium (5 mM) for 4 hr followed by 20-hr culture without strontium. Only one oocyte developed after BAPTA and strontium treatment of 36 oocytes examined. Developmental stages of all the oocytes ranged from IV to VII. These results suggest that intracellular calcium rise may participate in quail oocyte activation and allow fertilization and blastodermal development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jez.a.418 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.
Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
J Integr Neurosci
January 2025
Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.
View Article and Find Full Text PDFNutrients
January 2025
Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.
Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.
View Article and Find Full Text PDFLife (Basel)
December 2024
Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
The present study explored the possible antiobesogenic and osteoprotective properties of the gut metabolite ginsenoside CK to clarify its influence on lipid and atherosclerosis pathways, thereby validating previously published hypotheses. These hypotheses were validated by harvesting and cultivating 3T3-L1 and MC3T3-E1 in adipogenic and osteogenic media with varying concentrations of CK. We assessed the differentiation of adipocytes and osteoblasts in these cell lines by applying the most effective doses of CK that we initially selected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!