The yeast Saccharomyces cerevisiae is an important industrial microorganism. Nowadays, it is being used as a cell factory for the production of pharmaceuticals such as insulin, although this yeast has long been utilized in the bakery to raise dough, and in the production of alcoholic beverages, fermenting the sugars derived from rice, wheat, barley, corn and grape juice. S. cerevisiae has also been extensively used as a model eukaryotic system. In the last decade, genomic techniques have revealed important features of its molecular biology. For example, DNA array technologies are routinely used for determining gene expression levels in cells under different physiological conditions or environmental stimuli. Laboratory strains of S. cerevisiae are different from wine strains. For instance, laboratory yeasts are unable to completely transform all the sugar in the grape must into ethanol under winemaking conditions. In fact, standard culture conditions are usually very different from winemaking conditions, where multiple stresses occur simultaneously and sequentially throughout the fermentation. The response of wine yeasts to these stimuli differs in some aspects from laboratory strains, as suggested by the increasing number of studies in functional genomics being conducted on wine strains. In this paper we review the most recent applications of post-genomic techniques to understand yeast physiology in the wine industry. We also report recent advances in wine yeast strain improvement and propose a reference framework for integration of genomic information, bioinformatic tools and molecular biology techniques for cellular and metabolic engineering. Finally, we discuss the current state and future perspectives for using 'modern' biotechnology in the wine industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/yea.1545 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Division of Biochemistry and Molecular Biology, Federal State Budgetary Educational Institution of Higher Education "Siberian State Medical University" of the Ministry of Health of Russia, 634050 Tomsk, Russia.
Background: Over the past five years, the pregnancy rate in assisted reproductive technology (ART) programs in Russia has remained relatively stable. The aim of this study was to assess the distribution of monocyte and macrophage subsets in the blood and follicular fluid of infertile women undergoing assisted reproductive technology.
Methods: The study involved 45 women with a mean age of 35 ± 4.
Acta Biochim Biophys Sin (Shanghai)
January 2025
International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518060, China.
Relieving hypoxia in the tumor microenvironment (TME) promotes innate and adaptive immunity. Our previous research demonstrated that reoxygenation of the TME promotes the phagocytosis and tumor-killing functions of tumor-associated macrophages (TAMs) by upregulating pyruvate carboxylase (PCB). However, the mechanism remains obscure.
View Article and Find Full Text PDFUltrasound Obstet Gynecol
January 2025
Institute of Population Health, Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, UK.
Mol Plant
January 2025
Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China. Electronic address:
Hybrid potato breeding based on diploid inbred lines is transforming the way of genetic improvement of this staple food crop, which requires a deep understanding of potato domestication and differentiation. Here, we resequenced 314 diploid wild and landrace accessions to generate a variome map of 47,203,407 variants. Using the variome map, we discovered the reshaping of tuber transcriptome during potato domestication, characterized genome-wide differentiation between landrace groups Stenotomum and Phureja, and identified a jasmonic acid biosynthetic gene possibly affecting tuber dormancy period.
View Article and Find Full Text PDFPlant Commun
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:
UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!