Stress conditions inhibit mRNA export, but mRNAs encoding heat shock proteins continue to be efficiently exported from the nucleus during stress. How HSP mRNAs bypass this stress-associated export inhibition was not known. Here, we show that HSF1, the transcription factor that binds HSP promoters after stress to induce their transcription, interacts with the nuclear pore-associating TPR protein in a stress-responsive manner. TPR is brought into proximity of the HSP70 promoter after stress and preferentially associates with mRNAs transcribed from this promoter. Disruption of the HSF1-TPR interaction inhibits the export of mRNAs expressed from the HSP70 promoter, both endogenous HSP70 mRNA and a luciferase reporter mRNA. These results suggest that HSP mRNA export escapes stress inhibition via HSF1-mediated recruitment of the nuclear pore-associating protein TPR to HSP genes, thereby functionally connecting the first and last nuclear steps of the gene expression pathway, transcription and mRNA export.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2266631 | PMC |
http://dx.doi.org/10.1074/jbc.M704054200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!