Background: Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs) within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes.
Results: From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression.
Conclusion: The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements within the genome, RNA editing, loss of stop codons, and use of trans-splicing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151934 | PMC |
http://dx.doi.org/10.1186/1741-7007-5-41 | DOI Listing |
Protist
December 2024
Department of Biological Sciences, Indian Institute of Science Education and Research, 77QG+F7Q, IISER Bhopal Rd, Bhopal, India. Electronic address:
The mitochondrial genomes of dinoflagellate protists are remarkable for their highly fragmented and heterogeneous organization. Early attempts to determine their structure without 'next-generation' DNA sequencing failed to recover a defined genome. Still, it coincided in showing that the proteins coding genes, three in total, and parts of the ribosomal RNA genes were spread across a diffuse assortment of small linear fragments.
View Article and Find Full Text PDFJ Eukaryot Microbiol
November 2024
State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China.
Amyloodinium ocellatum is a protozoan parasite that causes amyloodiniosis in marine and brackish water fish, threatening global aquaculture. The present study investigates the morphology and ultrastructure of the free-living stages of A. ocellatum (tomont and dinospore) using light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFMar Pollut Bull
December 2024
School of Science and Technology, Hong Kong Metropolitan University, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong. Electronic address:
Omics technology has been employed in recent research on algicidal bacteria, but previous transcriptomic studies mainly focused on bacteria or algae, neglecting their interaction. This study explores interactions between algicidal bacterium Maribacter dokdonesis P4 and target alga Karenia mikimotoi KMHK using proteomics. Proteomics responses of KMHK after co-culture with P4 in separate compartments of the transwell for 8 and 24 h were evaluated using tandem mass tags (TMT) proteomics, and changes of P4 proteomics were also assessed.
View Article and Find Full Text PDFProtist
December 2024
Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Autophagy is an intracellular degradation mechanism by which cytoplasmic materials are delivered to and degraded in the lysosome-fused autophagosome (autolysosome) and proposed to have been established at an early stage of eukaryotic evolution. Dinoflagellates harboring endosymbiotic diatoms (so-called "dinotoms"), which retain their own nuclei and mitochondria in addition to plastids, have been investigated as an intermediate toward the full integration of a eukaryotic phototroph into the host-controlled organelle (i.e.
View Article and Find Full Text PDFJ Hazard Mater
September 2024
Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!