Background: Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs) within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes.

Results: From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression.

Conclusion: The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements within the genome, RNA editing, loss of stop codons, and use of trans-splicing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151934PMC
http://dx.doi.org/10.1186/1741-7007-5-41DOI Listing

Publication Analysis

Top Keywords

dinoflagellate mitochondrial
20
mitochondrial genomes
12
mitochondrial
9
dinoflagellate mitochondria
8
mitochondrial genome
8
reduced gene
8
gene content
8
dinoflagellate
7
gene
7
broad genomic
4

Similar Publications

The mitochondrial genomes of dinoflagellate protists are remarkable for their highly fragmented and heterogeneous organization. Early attempts to determine their structure without 'next-generation' DNA sequencing failed to recover a defined genome. Still, it coincided in showing that the proteins coding genes, three in total, and parts of the ribosomal RNA genes were spread across a diffuse assortment of small linear fragments.

View Article and Find Full Text PDF

Fine structural features of the free-living stages of Amyloodinium ocellatum (Dinoflagellata, Thoracosphaeraceae): A marine fish ectoparasite.

J Eukaryot Microbiol

November 2024

State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China.

Amyloodinium ocellatum is a protozoan parasite that causes amyloodiniosis in marine and brackish water fish, threatening global aquaculture. The present study investigates the morphology and ultrastructure of the free-living stages of A. ocellatum (tomont and dinospore) using light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Proteomic insights of interaction between ichthyotoxic dinoflagellate Karenia mikimotoi and algicidal bacteria Maribacter dokdonensis.

Mar Pollut Bull

December 2024

School of Science and Technology, Hong Kong Metropolitan University, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong. Electronic address:

Omics technology has been employed in recent research on algicidal bacteria, but previous transcriptomic studies mainly focused on bacteria or algae, neglecting their interaction. This study explores interactions between algicidal bacterium Maribacter dokdonesis P4 and target alga Karenia mikimotoi KMHK using proteomics. Proteomics responses of KMHK after co-culture with P4 in separate compartments of the transwell for 8 and 24 h were evaluated using tandem mass tags (TMT) proteomics, and changes of P4 proteomics were also assessed.

View Article and Find Full Text PDF

Dinotoms possess two evolutionary distinct autophagy-related ubiquitin-like conjugation systems.

Protist

December 2024

Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Autophagy is an intracellular degradation mechanism by which cytoplasmic materials are delivered to and degraded in the lysosome-fused autophagosome (autolysosome) and proposed to have been established at an early stage of eukaryotic evolution. Dinoflagellates harboring endosymbiotic diatoms (so-called "dinotoms"), which retain their own nuclei and mitochondria in addition to plastids, have been investigated as an intermediate toward the full integration of a eukaryotic phototroph into the host-controlled organelle (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Azaspiracids (AZAs) are toxic compounds from marine dinoflagellates that can accumulate in shellfish, posing a risk of food poisoning.
  • The study examined how scallops, specifically Chlamys farreri, respond to high AZA levels, revealing significant toxin accumulation and persistent immune activation.
  • Results showed that scallops manage AZA exposure through metabolic adjustments, including changes in energy pathways and autophagy, contributing to their resistance against these toxins.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!