A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dopamine D(1) and D(3) receptors oppositely regulate NMDA- and cocaine-induced MAPK signaling via NMDA receptor phosphorylation. | LitMetric

Development of drug addiction involves complex molecular changes in the CNS. The mitogen-activated protein kinase (MAPK) signaling pathway plays a key role in mediating neuronal activation induced by dopamine, glutamate, and drugs of abuse. We previously showed that dopamine D(1) and D(3) receptors play different roles in regulating cocaine-induced MAPK activation. Although there are functional and physical interactions between dopamine and glutamate receptors, little is known regarding the involvement of D(1) and D(3) receptors in modulating glutamate-induced MAPK activation and underlying mechanisms. In this study, we show that D(1) and D(3) receptors play opposite roles in regulating N-methyl-d-aspartate (NMDA) -induced activation of extracellular signal-regulated kinase (ERK) in the caudate putamen (CPu). D(3) receptors also inhibit NMDA-induced activation of the c-Jun N-terminal kinase and p38 kinase in the CPu. NMDA-induced activation of the NMDA-receptor R1 subunit (NR1), Ca(2+)/calmodulin-dependent protein kinase II and the cAMP-response element binding protein (CREB), and cocaine-induced CREB activation in the CPu are also oppositely regulated by dopamine D(1) and D(3) receptors. Finally, the blockade of NMDA-receptor reduces cocaine-induced ERK activation, and inhibits phosphorylation of NR1, Ca(2+)/calmodulin-dependent protein kinase II, and CREB, while inhibiting ERK activation attenuates cocaine-induced CREB phosphorylation in the CPu. These results suggest that dopamine D(1) and D(3) receptors oppositely regulate NMDA- and cocaine-induced MAPK signaling via phosphorylation of NR1.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2007.04840.xDOI Listing

Publication Analysis

Top Keywords

dopamine receptors
16
cocaine-induced mapk
12
mapk signaling
12
protein kinase
12
activation
9
receptors oppositely
8
oppositely regulate
8
regulate nmda-
8
nmda- cocaine-induced
8
dopamine glutamate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!