A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vitro inhibition of oral streptococci binding to the acquired pellicle by algal lectins. | LitMetric

Aims: The initial colonization of the tooth by streptococci involves their attachment to adsorbed components of the acquired pellicle. Avoiding this adhesion may be successful in preventing caries at early stages. Salivary mucins are glycoproteins that when absorbed onto hydroxyapatite may provide binding sites for certain bacteria. Algal lectins may be especially interesting for oral antiadhesion trials because of their great stability and high specificity for mucins. This work aimed to evaluate the potential of two algal lectins to inhibit the adherence of five streptococci species to the acquired pellicle in vitro.

Methods And Results: The lectins used were extracted from Bryothamnion triquetrum (BTL) and Bryothamnion seaforthii (BSL). Fluorescence microscopy was applied to visualize the ability of fluorescein isothiocyanate-labelled lectins to attach to the pellicle and revealed a similar capability for both lectins. Streptococcal adherence assays were performed using saliva-coated microtitre plates. BSL inhibited more than 75% of Streptococcus sanguis, Streptococcus mitis, Streptococcus sobrinus and Streptococcus mutans adherence, achieving 92% to the latter. BTL only obtained statistically significant results on S. mitis and S. sobrinus, whose adherence was decreased by 32.5% and 54.4%, respectively.

Conclusion: Algal lectins are able to inhibit streptococcal adherence.

Significance And Impact Of The Study: Our results support the proposed application of lectins in antiadhesion therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2672.2007.03326.xDOI Listing

Publication Analysis

Top Keywords

algal lectins
16
acquired pellicle
12
lectins
8
lectins inhibit
8
vitro inhibition
4
inhibition oral
4
oral streptococci
4
streptococci binding
4
binding acquired
4
pellicle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!