The energies of the kinetically inert, electronically saturated Lukehart-type metalla-beta-diketone [Re{(COMe)2H}(CO)4] (9 a) and of the kinetically labile, electronically unsaturated platina-beta-diketones [Pt{(COMe)2H}Cl2]- (10 a), [Pt2{(COMe)2H}2(micro-Cl)2] (11 a), and [Pt{(COMe)2H}(bpy)]+ (12 a) have been calculated by DFT at the B3LYP/6-311++G(d,p) level using effective core potentials with consideration of relativistic effects for the transition metals. Analogously, energies of the requisite open (non-hydrogen-bonded) equilibrium conformers (9 b, 10 c, 11 b, 12 b) and energies which were obtained from the hydrogen-bonded conformers by rigid rotation of the OH group around the C--O bond by 180 degrees followed by relaxation of all bond lengths and angles (9 c, 10 d, 11 c, 12 d) have been calculated. These energies were found to be higher by 14.7/27.2 (9 b/9 c), 20.7/27.2 (10 c/10 d), 19.2/25.7 (11 b/11 c), and 9.4/19.6 kcal mol(-1) (12 b/12 d) than those of the intramolecularly O--HO hydrogen-bonded metalla-beta-diketones 9 a, 10 a, 11 a, and 12 a, respectively. In acetylacetone (Hacac), the generic organic analogue of metalla-beta-diketones, the energies of the most stable non-hydrogen-bonded enol isomer (6 b) and of the conformer derived from the H-bonded form by rigid rotation of the OH group by 180 degrees followed by subsequent relaxation of all bond lengths and angles (6 k) were found to be 10.9/16.1 kcal mol(-1) (6 b/6 k) higher compared to the intramolecularly O--HO bonded isomer 6 a. Thus, the hydrogen bonds in metalla-beta- diketones must be regarded as strong and were found to be up to twice as strong as that in acetylacetone. A linear relationship was found between the hydrogen-bond energies based on the rigidly rotated structures and the OO separation in the hydrogen-bonded structures. Furthermore, these energies were also found to be correlated with the electron densities at the OH bond critical points (rhobcp) in the O--HO bonds of metalla-beta-diketones 9 a, 10 a, 11 a, and 12 a (calculated using the AIM theory). The comparison of the energies of the doubly intermolecularly hydrogen-bonded dinuclear platina-beta-diketone [{Pt{(COMe)2H}(bpy)}2]2+ (14) with that of the mononuclear intramolecularly hydrogen-bonded cation [Pt{(COMe)2H}(bpy)]+ (12 a) showed that the intermolecular hydrogen bonds in 14 are weaker than the intramolecular hydrogen bond in 12.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200700666 | DOI Listing |
J Phys Chem A
January 2025
Department of Chemistry and Biochemistry, Shahrood Branch, Islamic Azad University, 36714 Shahrood, Iran.
This study investigates the nature and interplay of noncovalent interactions (NCIs)─tetrel bonds (TB), hydrogen bonds (HB), and halogen bonds (XB)─in molecular assemblies formed between trifluorogermyl hypochlorite (FGeOCl) and hydrogen cyanide (HCN). Using a combination of high-level computational methods, we explored the geometric, energetic, and electronic properties of dimers, trimers, and tetramers formed in different molar ratios of interacting reagents. Various analyses reveal a significant cooperativity between TB and HB, which mutually reinforce each other, while XB interactions are diminished in the presence of TB and HB.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
After cyclo-pentazolate anion, a 5/6 fused structure of N is constructed, and four novel nitrogen-rich ionic compounds are assembled on its basis. The results of the quantum calculations revealed an uneven distribution of electrons on cyclo-N , with significant charge density near the N5/N9 atoms and an ADCH charge of -0.425.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
Chinese herbal medicine (CHM) has offered a great treasure and source of inspiration for developing innovative medicinal materials and therapy. In this work, inspired by the macroscopic compatibility of and in CHM, the puerarin (PUE) and CaSO (Ca) as the main constituents, respectively, from the two herbs are co-assembled into two-component molecular hydrogels. Such two-component gels exhibited enhanced mechanical properties compared with the single-component PUE gel due to the introduction of crosslinking hydrogen bonds between PUE and Ca.
View Article and Find Full Text PDFAcc Chem Res
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
ConspectusSymmetry is a pervasive phenomenon spanning diverse fields, from art and architecture to mathematics and science. In the scientific realms, symmetry reveals fundamental laws, while symmetry breaking─the collapse of certain symmetry─is the underlying cause of phenomena. Research on symmetry and symmetry breaking consistently provides valuable insights across disciplines, from parity violation in physics to the origin of homochirality in biology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!