Electrochemical control of surface properties using a quinone-functionalized monolayer: effects of donor-acceptor complexes.

Chem Commun (Camb)

Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.

Published: October 2007

A benzoquinone monolayer-functionalized electrode reveals electrochemically or chemically controlled wettability; the hydrophobicity of the hydroquinone-modified surface is enhanced by the presence of a donor-acceptor complex with N,N'-dimethyl-4,4'-bipyridinium as the pi-electron acceptor.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b710540aDOI Listing

Publication Analysis

Top Keywords

electrochemical control
4
control surface
4
surface properties
4
properties quinone-functionalized
4
quinone-functionalized monolayer
4
monolayer effects
4
effects donor-acceptor
4
donor-acceptor complexes
4
complexes benzoquinone
4
benzoquinone monolayer-functionalized
4

Similar Publications

Dumbbell probe-bridged CRISPR/Cas13a and nicking-mediated DNA cascade reaction for highly sensitive detection of colorectal cancer-related microRNAs.

Biosens Bioelectron

January 2025

Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, 646000, China. Electronic address:

Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally, necessitating the development of sensitive and minimally invasive diagnostic approaches. In this study, we present a novel diagnostic strategy by integrating dumbbell probe-mediated CRISPR/Cas13a with nicking-induced DNA cascade reaction (DP-bridged Cas13a/NDCR) for highly sensitive microRNA (miRNA) detection. Target miRNA triggers Cas13a-mediated cleavage of the dumbbell probe, releasing an intermediate strand that hybridizes with a methylene blue-labeled hairpin probe on the electrode surface.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.

View Article and Find Full Text PDF

The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor.

View Article and Find Full Text PDF

Efficient management of soil nutrients is essential for optimizing crop production, ensuring sustainable agricultural practices, and addressing the challenges posed by population growth and environmental degradation. Smart agriculture, using advanced technologies, plays an important role in achieving these goals by enabling real-time monitoring and precision management of nutrients. In open-field soil cultivation, spatial variability in soil properties demands site-specific nutrient management and integration with variable-rate technology (VRT) to optimize fertilizer application, reduce nutrient losses, and enhance crop yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!