Inbreeding depression, one of the main factors driving mating system evolution, can itself evolve as a function of the mating system (the genetic purging hypothesis). Classical models of coevolution between mating system and inbreeding depression predict negative associations between inbreeding depression and selfing rate, but more recent approaches suggest that negative correlations should usually be too weak or transient to be detected within populations. Empirical results remain unclear and restricted to plants. Here, we evaluate, for the first time, the within-population genetic correlation between inbreeding depression and a trait that controls the amount of self-fertilization (the waiting time) in a self-fertile hermaphroditic animal, the freshwater snail Physa acuta. Using a large quantitative-genetic design (36 grand-families and 348 families), we observe abundant within-population family-level genetic variation for both inbreeding depression (estimated for survival, fecundity, and size) and the degree of behavioral selfing avoidance. However, we detected no correlation between waiting time and inbreeding depression across families. In agreement with recent models, this result shows that mutational variance rather than differential purging accounts for most of the genetic variance in inbreeding depression within a population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1558-5646.2007.00223.x | DOI Listing |
Translocating individuals from multiple source populations is one way to bolster genetic variation and avoid inbreeding in newly established populations. However, mixing isolated populations, especially from islands, can potentially lead to outbreeding depression and/or assortative mating, which may limit interbreeding between source populations. Here, we investigated genetic consequences of mixing individuals from two island populations of the dibbler () in an island translocation.
View Article and Find Full Text PDFAnimal
December 2024
Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences Institution, 40, Guba S. str., H-7400 Kaposvár, Hungary.
Inbreeding depression (ID) is a well-documented phenomenon associated with reduced fitness and possible extinction. However, ID can be mitigated or even eliminated through the interplay of inbreeding and selection, a process known as purging. The aim of this study was to compare the predictive power of two commonly used approaches in models with and without random dam effects to detect purging (full and reduced models).
View Article and Find Full Text PDFCurr Biol
January 2025
University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada. Electronic address:
Kelp forests are declining in many parts of the northeast Pacific. In small populations, genetic drift can reduce adaptive variation and increase fixation of recessive deleterious alleles, but natural selection may purge harmful variants. To understand evolutionary dynamics and inform restoration strategies, we investigated genetic structure and the outcomes of genetic drift and purging by sequencing the genomes of 429 bull kelp (Nereocystis luetkeana) and 211 giant kelp (Macrocystis sp.
View Article and Find Full Text PDFRemnant populations of endangered species often have complex demographic histories associated with human impact. This can present challenges for conservation as populations modified by human activity may require bespoke management. The Eurasian red squirrel, (L.
View Article and Find Full Text PDFEvolution
January 2025
Earlham Institute, Norwich Research Park, Norwich, United Kingdom.
We are witnessing an ongoing global biodiversity crisis, and an increasing number of mammalian populations are at risk of decline. Species that have survived severe historic bottlenecks, such as the cheetah (Acinonyx jubatus) exhibit symptoms of inbreeding depression including reproductive and developmental defects. Although it has long been suggested that such defects stem from an accumulation of weakly deleterious mutations, the implications of such mutations leading to pseudogenization has not been assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!