In this work, the film thickness (l0) effect on the phase and dewetting behaviors of the blend film of poly(methyl methacrylate)/poly(styrene-ran-acrylonitrile) (PMMA/SAN) has been studied by in situ atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The thinner film shows the more compatibility of the blend, and the phase separation of the film occurs at l0>5Rg (radius of gyration). An initially time-independent q*, the characteristic wavenumber of the phase image, which is in good agreement of Cahn's linearized theory for the early stage of spinodal decomposition, has been obtained in real space and discussed in detail. For 5Rg>l0>3Rg, a "pseudo-dewetting/(phase separation+wetting)" behavior occurs, where the pseudo-wetting is driven by the concentration fluctuation mechanism. For l0<3Rg, a "real dewetting/(phase separation+wetting)" behavior occurs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la701761p | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!