We report on the experimental investigation of the effect of the top and bottom wall plates in micromachined nonporous pillar array columns. It has been found that their presence yields an additional c-term type of band broadening that can make up a significant fraction of the total band broadening (at least if considering nonporous pillars and a nonretained tracer). Their presence also induces a clear (downward) shift of the optimal velocity. These observations are, however in excellent quantitative agreement with the theoretical expectations obtained from a computational fluid dynamics study. The presently obtained experimental results, hence, demonstrate that the employed high aspect ratio Bosch etching process can be used to fabricate micromachined pillar arrays that are sufficiently refined to achieve the theoretical performance limit.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.200700203DOI Listing

Publication Analysis

Top Keywords

band broadening
12
experimental investigation
8
top bottom
8
micromachined nonporous
8
nonporous pillar
8
pillar array
8
array columns
8
investigation band
4
broadening originating
4
originating top
4

Similar Publications

Simulation of the performance of pillar array columns using the pore-throat ratio as efficiency descriptor.

J Chromatogr A

January 2025

Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.

Traditional packed beds in chromatography suffer from increased band broadening due to the random nature of packing, leading non-ideal fluid flow and channeling. To address these challenges, pillar array columns have been developed, offering improved performance over random packing thanks to their homogenous fluid profiles. The study aims to i) evaluate fluid dynamics and chromatographic performance across different PAC morphologies, ii) establish the influence of column morphology on performance, and iii) assess the correlation between chromatographic performance and hydrodynamic parameters.

View Article and Find Full Text PDF

Photoassisted lithium-sulfur (Li-S) batteries offer a promising approach to enhance the catalytic transformation kinetics of polysulfide. However, the development is greatly hindered by inadequate photo absorption and severe photoexcited carriers recombination. Herein, a photonic crystal sulfide heterojunction structure is designed as a bifunctional electrode scaffold for photoassisted Li-S batteries.

View Article and Find Full Text PDF

Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.

View Article and Find Full Text PDF

Fine-tuning d-p hybridization in Ni-B cocatalyst for enhanced photocatalytic H production.

Nat Commun

January 2025

Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, PR China.

The H-evolution kinetics play a pivotal role in governing the photocatalytic hydrogen-evolution process. However, achieving precise regulation of the H-adsorption and H-desorption equilibrium (H/H) still remains a great challenge. Herein, we propose a fine-tuning d-p hybridization strategy to precisely optimize the H/H kinetics in a Ni-B modified CdS photocatalyst (Ni-B/CdS).

View Article and Find Full Text PDF

The exact moment method for the determination of the dispersion tensor in retentive porous media has been adopted to compute the dispersion coefficients, the plate height curves and the kinetic performance factors of eight different 3D printable stationary phases based on triply periodic minimal surfaces (TPMS). The two cases in which the stationary phase is impermeable (hydrodynamic dispersion) or superficially retentive have been analyzed in detail. The Carman-Kozeny relationship between permeability K, hydraulic diameter d and hydrodynamic tortuosity τ holds true for all the geometries investigated with a unique shape coefficient K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!