Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein biomarkers observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectra (MALDI-TOF-MS) of cell lysates of three strains of Campylobacter coli, two strains of C. lari and one strain of C. concisus have been identified by 'bottom-up' proteomic techniques. The significant findings are as follows. First, the protein biomarkers identified were: PhnA-related protein, 4-oxalocrotonate tautomerase (DmpI)-related protein, NifU-like protein, cytochrome c, DNA-binding protein HU, 10 kDa chaperonin, thioredoxin, as well as several conserved hypothetical and ribosomal proteins. Second, variations in the biomarker ion m/z in MALDI-TOF-MS spectra across species and strains are the result of variations in the amino acid sequence of the protein due to non-synonymous mutations of the biomarker gene. Third, the most common post-translational modifications (PTMs) were the removal of the N-terminal methionine and N-terminal signal peptides. However, in the case of the NifU protein (an iron-sulfur cluster transport protein), post-translational cleavage occurred from the C-terminus. Fourth, only the genomes of the C. coli strain RM2228 and C. lari strain RM2100 have been sequenced; thus, proteomic identification of the proteins of the other strains in this study relied upon sequence homology to the genomic sequence of these strains as well as the genomes of sequences of other Campylobacter strains. In some cases, the determination of the full amino acid sequence of a protein biomarker from a genomically non-sequenced strain was accomplished by combining non-overlapping partial sequences from proteomic identifications of genomically-sequenced strains that were of the same species (or of a different species) to that of the non-sequenced strain. The accuracy of this composite sequence was confirmed by both MS and MS/MS. It was necessary, in some cases, to perform de novo sequencing on 'gaps' in the composite sequence that were not homologous to any genomically-sequenced strain. In order to validate the composite sequence approach, composite sequences were further confirmed by subsequent DNA sequencing of the biomarker gene. Thus, using the composite sequence approach, it was possible to determine the full amino acid sequence of an unknown protein from a genomically non-sequenced bacterial strain without the necessity of either sequencing the biomarker gene or performing full de novo MS/MS sequencing. The sequence obtained could then be used as a strain-specific biomarker for analysis by 'top-down' proteomics techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b702859h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!