In mammals, nonsense-mediated mRNA decay (NMD) is a quality-control mechanism that degrades mRNA harboring a premature termination codon to prevent the synthesis of truncated proteins. To gain insight into the NMD mechanism, we identified NMD inhibitor 1 (NMDI 1) as a small molecule inhibitor of the NMD pathway. We characterized the mode of action of this compound and demonstrated that it acts upstream of hUPF1. NMDI 1 induced the loss of interactions between hSMG5 and hUPF1 and the stabilization of hyperphosphorylated isoforms of hUPF1. Incubation of cells with NMDI 1 allowed us to demonstrate that NMD factors and mRNAs subject to NMD transit through processing bodies (P-bodies), as is the case in yeast. The results suggest a model in which mRNA and NMD factors are sequentially recruited to P-bodies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064650 | PMC |
http://dx.doi.org/10.1083/jcb.200611086 | DOI Listing |
Nat Cancer
January 2025
Department of Discovery Oncology, Genentech, South San Francisco, CA, USA.
Multiple next-generation molecules targeting estrogen receptor α (ERα) are being investigated in breast cancer clinical trials, encompassing thousands of women globally. Development of these molecules was partly motivated by the discovery of resistance-associated mutations in ESR1 (encodes ERα). Here, we studied the impact of ERα antagonist/degraders against Esr1 mutations expressed in mouse mammary glands.
View Article and Find Full Text PDFNeurology
January 2025
The Dubowitz Neuromuscular Centre, Developmental Neurosciences Department, University College London, Great Ormond Street Institute of Child Health, United Kingdom.
Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.
View Article and Find Full Text PDFNeuromuscul Disord
January 2025
Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Translational Medical Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
Fukuyama congenital muscular dystrophy (FCMD) is the second most common childhood-onset muscular dystrophy in Japan. However, only a few comprehensive studies have investigated cardiac complications associated with FCMD, with none on arrhythmias. The present study evaluated 78 Holter electrocardiograms from 15 patients with FCMD.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Université Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000, Besançon, France. Electronic address:
Nonsense-Mediated mRNA Decay (NMD) is a key control mechanism of RNA quality widely described to target mRNA harbouring Premature Termination Codon (PTC). However, recent studies suggested the existence of non-canonical pathways which remain unresolved. One of these alternative pathways suggested that specific mRNA could be targeted through their 3' UTR (Untranslated Region), which contain various elements involved in mRNA stability regulation.
View Article and Find Full Text PDFJ Neurol
January 2025
Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain.
Background: Distal myopathies (MPDs) are heterogeneous diseases of complex diagnosis whose prevalence and distribution in specific populations are unknown.
Methods: Demographic, clinical, genetic, neurophysiological, histopathological and muscle imaging characteristics of a MPDs cohort from a neuromuscular reference center were analyzed to study their epidemiology, features, genetic distribution and factors related to diagnosis.
Results: The series included 219 patients (61% were men, 94% Spanish and 41% sporadic cases).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!