DNA primase synthesizes short RNA primers that are required to initiate DNA synthesis on the parental template strands during DNA replication. Eukaryotic primase contains two subunits, p48 and p58, and is normally tightly associated with DNA polymerase alpha. Despite the fundamental importance of primase in DNA replication, structural data on eukaryotic DNA primase are lacking. The p48/p58 dimer was subjected to limited proteolysis, which produced two stable structural domains: one containing the bulk of p48 and the other corresponding to the C-terminal fragment of p58. These domains were identified by mass spectrometry and N-terminal sequencing. The C-terminal p58 domain (p58C) was expressed, purified, and characterized. CD and NMR spectroscopy experiments demonstrated that p58C forms a well folded structure. The protein has a distinctive brownish color, and evidence from inductively coupled plasma mass spectrometry, UV-visible spectrophotometry, and EPR spectroscopy revealed characteristics consistent with the presence of a [4Fe-4S] high potential iron protein cluster. Four putative cysteine ligands were identified using a multiple sequence alignment, and substitution of just one was sufficient to cause loss of the iron-sulfur cluster and a reduction in primase enzymatic activity relative to the wild-type protein. The discovery of an iron-sulfur cluster in DNA primase that contributes to enzymatic activity provides the first suggestion that the DNA replication machinery may have redox-sensitive activities. Our results offer new horizons in which to investigate the function of high potential [4Fe-4S] clusters in DNA-processing machinery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M705826200 | DOI Listing |
Nucleic Acids Res
January 2025
State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Shizishan Road No.1, Hongshan District, 430070 Wuhan, China.
Primase-polymerases (PrimPols) play divergent functions from DNA replication to DNA repair in all three life domains. In archaea and bacteria, numerous and diverse PPs are encoded by mobile genetic elements (MGEs) and act as the replicases for their MGEs. However, their varying activities and functions are not fully understood.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.
The fusion expression of deoxyribonucleic acid (DNA) replication-related proteins with nucleotide deaminase enzymes promotes random mutations in bacterial genomes, thereby increasing genetic diversity among the population. Most previous studies have focused on cytosine deaminase, which produces only C → T mutations, significantly limiting the variety of mutation types. In this study, we developed a fusion expression system by combining DnaG (RNA primase) with adenine deaminase TadA-8e (DnaG-TadA) in , which is capable of rapidly introducing A → G mutations into the genome, resulting in a 664-fold increase in terms of mutation rate.
View Article and Find Full Text PDFNat Commun
December 2024
Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France.
Replication Protein A (RPA) plays a pivotal role in DNA replication by coating and protecting exposed single-stranded DNA, and acting as a molecular hub that recruits additional replication factors. We demonstrate that archaeal RPA hosts a winged-helix domain (WH) that interacts with two key actors of the replisome: the DNA primase (PriSL) and the replicative DNA polymerase (PolD). Using an integrative structural biology approach, combining nuclear magnetic resonance, X-ray crystallography and cryo-electron microscopy, we unveil how RPA interacts with PriSL and PolD through two distinct surfaces of the WH domain: an evolutionarily conserved interface and a novel binding site.
View Article and Find Full Text PDFVirus Evol
November 2024
Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1043, Leuven 3000, Belgium.
The widespread use of antivirals in immunocompromised individuals has led to frequent occurrences of drug-resistant herpes simplex virus 1 (HSV-1) infections. Current antivirals target the viral DNA polymerase (DP), resulting in cross-resistance patterns that emphasize the need for novel treatment strategies. In this study, we assessed whether combining antivirals with different targets affects drug resistance emergence by passaging wild-type HSV-1 under increasing concentrations of acyclovir (ACV), foscarnet (phosphonoformic acid, PFA), or the helicase-primase inhibitor pritelivir (PTV), individually or in combination (ACV + PTV or PFA + PTV).
View Article and Find Full Text PDFEur J Hum Genet
November 2024
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
POLA2 encodes the accessory subunit of DNA polymerase α (polα)/primase, which is crucial for telomere C-strand fill-in. Incomplete fill-in of the C-rich telomeric strand after DNA replication has been proposed as a mechanism for Coats plus syndrome, a phenotype within the broader spectrum of telomere biology disorders (TBD). Coats plus syndrome has so far been associated with pathogenic variants in POT1, CTC1, and STN1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!