A comparative study of the rates of ferrocyanide-catalyzed oxidation of several oxymyoglobins by molecular oxygen is reported. Oxidation of the native oxymyoglobins from sperm whale, horse and pig, as well as the chemically modified (MbO(2)) sperm whale oxymyoglobin, with all accessible His residues alkylated by sodium bromoacetate (CM-MbO(2)), and the mutant sperm whale oxymyoglobin [MbO(2)(His119-->Asp)], was studied. The effect of pH, ionic strength and the concentration of anionic catalyst ferrocyanide, [Fe(CN)(6)](4-), on the oxidation rate is investigated, as well as the effect of MbO(2) complexing with redox-inactive Zn(2+), which forms the stable chelate complex with functional groups of His119, Lys16 and Asp122, all located nearby. The catalytic mechanism was demonstrated to involve specific [Fe(CN)(6)](4-) binding to the protein in the His119 region, which agrees with a high local positive electrostatic potential and the presence of a cavity large enough to accommodate [Fe(CN)(6)](4-) in that region. The protonation of the nearby His113 and especially His116 plays a very important role in the catalysis, accelerating the oxidation rate of bound [Fe(CN)(6)](4-) by dissolved oxygen. The simultaneous occurrence of both these factors (i.e. specific binding of [Fe(CN)(6)](4-) to the protein and its fast reoxidation by oxygen) is necessary for the efficient ferrocyanide-catalyzed oxidation of oxymyoglobin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2007.06061.x | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
The remarkable efficiency with which enzymes catalyze small-molecule reactions has driven their widespread application in organic chemistry. Here, we employ automated fast-flow solid-phase synthesis to access catalytically active full-length enzymes without restrictions on the number and structure of noncanonical amino acids incorporated. We demonstrate the total syntheses of iron-dependent myoglobin (BsMb) and sperm whale myoglobin (SwMb).
View Article and Find Full Text PDFAnat Rec (Hoboken)
January 2025
Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA.
The pygmy sperm whale (Kogia breviceps) possesses an exocrine gland associated with its false gill slit pigmentation pattern. The cervical gill slit gland is a compound tubuloalveolar gland that produces a holocrine secretion and displays maturational changes in size and secretory histology. While the morphology of the cervical gill slit gland has been described in detail, to date, the chemical composition of its secretion remains uncharacterized.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Information Technology Management, Faculty of Management Technology and Information System, Port Said University, Port Said, 42526, Egypt.
The Internet of Things (IoTs) has revolutionized cities, enabling them to become smarter. IoTs play an important role in monitoring the traffic cameras, roads, smart farming, connected vehicles, air quality, water level, humidity, and carbon dioxide pollution levels in city buildings. One of the major challenges of smart cities is the cyber threat to sensitive data.
View Article and Find Full Text PDFJ Acoust Soc Am
December 2024
Sea Mammal Research Unit, School of Biology, University of St Andrews, KY16 9TH, St Andrews, United Kingdom.
Passive acoustic monitoring (PAM) is an increasingly popular tool to study vocalising species. The amount of data generated by PAM studies calls for robust automatic classifiers. Deep learning (DL) techniques have been proven effective in identifying acoustic signals in challenging datasets, but due to their black-box nature their underlying biases are hard to quantify.
View Article and Find Full Text PDFPrevious studies have described two distinct vascular systems in cetacean fins. However, these studies have been limited to Delphinoidea species, with little information on their three-dimensional structures. In this study, the anatomical analysis of the caudal and dorsal fins of a dwarf sperm whale was conducted using X-ray computed tomography and gross dissection with staining, providing the first confirmation of the two vascular systems in the fins of the family Kogiidae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!