Pathogen-specific innate immune response.

Adv Exp Med Biol

Los Alamos National Laboratory, Biosciences Division, Mail Stop M888, HRL-1, TA-43, Los Alamos, NM 87545, USA.

Published: October 2007

This chapter summarizes our studies on the three toll-like receptor pathways, namely TLR4, TLR2, and TLR3, induced by lipopolysaccharides (LPS), peptidoglycan (PGN), and double-stranded RNA (dsRNA) in antigen presenting cells (APC). The particular emphasis is on the activation of human innate immune responses via cytokine and chemokine production. Three different measurements have been performed on monocytic and dendritic cells as model APCs: (i) the expression of various cytokine and chemokine genes by real-time PCR, (ii) the release of the cytokines and chemokines by ELISA, and (iii) gene expression analysis by cytokine and chemokine pathway-specific and whole genome microarrays. Real-time PCR and ELISA enable us to identify cytokines and chemokines that are produced specifically upon LPS, PGN, or dsRNA stimulation. Subsequently, microarray studies and appropriate validation experiments help us to identify genes involved in the upstream pathways that cause the induction of cytokines and chemokines. It is evident that TLR4-LPS, TLR2-PGN, and TLR3-dsRNA pathways are distinguished by the specific set of cytokines and chemokines they induce as well as by the upstream signaling events.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-0-387-71767-8_24DOI Listing

Publication Analysis

Top Keywords

cytokines chemokines
16
cytokine chemokine
12
innate immune
8
real-time pcr
8
pathogen-specific innate
4
immune response
4
response chapter
4
chapter summarizes
4
summarizes studies
4
studies three
4

Similar Publications

Unlabelled: The tonsils have been identified as a site of replication for Epstein-Barr virus, adenovirus, human papillomavirus, and other respiratory viruses. Human tonsil epithelial cells (HTECs) are a heterogeneous group of actively differentiating cells. Here, we investigated the cellular features and susceptibility of differentiated HTECs to specific influenza viruses, including expression of avian-type and mammalian-type sialic acid (SA) receptors, viral replication dynamics, and the associated cytokine secretion profiles.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is characterized by progressive and incurable airflow obstruction and chronic inflammation. Both TGF-β1 and CXCL8 have been well described as fundamental to COPD progression. DNA methylation and histone acetylation, which are well-understood epigenetic mechanisms regulating gene expression, are associated with COPD progression.

View Article and Find Full Text PDF

Inflammation models with the proinflammatory cytokine interleukin-1β (IL-1β) are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis (OA). The aim of this study was to systematically analyze the influence of IL-1β in a 3D chondral pellet culture model. Bovine articular chondrocytes were cultured to passage 3 and then placed in pellet culture.

View Article and Find Full Text PDF

Purpose: This study aimed to compare systemic immune responses and metastatic effects induced by radiofrequency ablation (RFA) and irreversible electroporation (IRE) in murine tumor models. We assessed cytokine production, growth of treated and untreated metastatic tumors, and synergy with immune checkpoint inhibitors (ICIs).

Materials And Methods: Hep55.

View Article and Find Full Text PDF

This review evaluated the correlation between inflammatory response and clinical outcomes in pediatric patients with meningitis. PubMed, Scopus, and Web of Science were searched for relevant studies published until March 2024. A total of 139 articles were identified; 7 studies were eligible, and 3 provided data for the meta-analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!