Investigation of hypromellose particle size effects on drug release from sustained release hydrophilic matrix tablets.

Drug Dev Ind Pharm

Water Soluble Polymers, The Dow Chemical Company, Midland, MI 48674, USA.

Published: September 2007

Selected combinations of six model drugs and four hypromellose (USP 2208) viscosity grades were studied utilizing direct compression and in vitro dissolution testing. Experimental HPMC samples with differing particle size distributions (coarse, fine, narrow, bimodal) were generated by sieving. For some formulations, the impact of HPMC particle size changes was characterized by faster drug release and an apparent shift in drug release mechanism when less than 50% of the HPMC passed through a 230 mesh (63 microm) screen. Within the ranges studied, drug release from other formulations appeared to be unaffected by HPMC particle size changes.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03639040601134132DOI Listing

Publication Analysis

Top Keywords

particle size
16
drug release
16
hpmc particle
8
size changes
8
release
5
investigation hypromellose
4
particle
4
hypromellose particle
4
size
4
size effects
4

Similar Publications

Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.

View Article and Find Full Text PDF

Background: The German cockroach () is a pest with a global distribution that has adapted to live in human environments. threatens human health by producing asthma-inducing allergens, carrying pathogenic/antibiotic-resistant microbes, and contributing to unhealthy indoor environments. Effective application of insecticides can play an important role in cockroach control programs.

View Article and Find Full Text PDF

Inactivation of antibiotic resistant bacteria by nitrogen-doped carbon quantum dots through spontaneous generation of intracellular and extracellular reactive oxygen species.

Mater Today Bio

February 2025

State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

The widespread antibiotic resistance has called for alternative antimicrobial agents. Carbon nanomaterials, especially carbon quantum dots (CQDs), may be promising alternatives due to their desirable physicochemical properties and potential antimicrobial activity, but their antimicrobial mechanism remains to be investigated. In this study, nitrogen-doped carbon quantum dots (N-CQDs) were synthesized to inactivate antibiotic-resistant bacteria and treat bacterial keratitis.

View Article and Find Full Text PDF

This study focused on the effect of ultrasound-assisted immersion freezing (UIF) with different ultrasound power (200, 400, 600 W) on the physicochemical and digestive properties of beef myofibrillar proteins (BMP). The results showed that the solubility and thermal stability of BMP were significantly increased, when treated with 400 W ultrasound, and the α-helix, β-sheets, β-turns, and random-coil fractions structures content were higher and the fluorescence intensity was closest to that of the control group, demonstrating enhanced structural stability of BMP. The protein digestibility of the UIF-400 W group was significantly enhanced while the particle size of the digested product was reduced, which proved its enhanced digestion characteristics.

View Article and Find Full Text PDF

Injectable biomaterials play a vital role in modern medicine, offering tailored functionalities for diverse therapeutic and diagnostic applications. In ophthalmology, for instance, viscoelastic materials are crucial for procedures such as cataract surgery but often leave residues, increasing postoperative risks. This study introduces injectable fluorescent viscoelastics (FluoVs) synthesized via one-step controlled radical copolymerization of oligo(ethylene glycol) acrylate and fluorescein acrylate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!