Choroidal neovascularization (CNV) in age-related macular degeneration is a leading cause of blindness. Very low density lipoprotein receptor gene knock-out (Vldlr(-/-)) mice have been shown to develop subretinal neovascularization (NV) with an unknown mechanism. The present study showed that in Vldlr(-/-) mice, NV initiated in the choroid and progressed to penetrate the retinal pigment epithelium layer, proliferating in the subretinal space. This phenotype recapitulated what is seen in wet age-related macular degeneration, suggesting that this is a CNV model. The CNV correlated with overexpression of vascular endothelial growth factor in Vldlr(-/-) eyecups and was blocked by a neutralizing antibody against vascular endothelial growth factor receptor-2. The wnt co-receptor LRP5/6 expression was significantly up-regulated in Vldlr(-/-) eyecups compared with that in wild-type mice. Significantly, Vldlr(-/-) mice showed impaired phosphorylation of downstream effectors of the wnt signaling pathway, glycogen synthase kinase-3beta (GSK-3beta), and beta-catenin, concomitant with increased levels of free GSK-3beta and beta-catenin, suggesting an increased activity of the wnt pathway. Down-regulation of VLDLR by small interference RNA resulted in up-regulation of LRP5/6 expression and activation of beta-catenin in cultured endothelial cells. Furthermore, Dickkopf-1, a specific inhibitor of the wnt pathway, effectively decreased vascular endothelial growth factor and beta-catenin levels in the retinal pigment epithelium of Vldlr(-/-) mice and in cells transfected with the VLDLR small interference RNA. These results suggest that VLDLR functions as a negative regulator of CNV, and this function is mediated through the wnt pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M611289200DOI Listing

Publication Analysis

Top Keywords

vldlr-/- mice
16
vascular endothelial
12
endothelial growth
12
growth factor
12
wnt pathway
12
low density
8
density lipoprotein
8
lipoprotein receptor
8
negative regulator
8
wnt signaling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!