High-density whole-genome cDNA microarrays were used to investigate substrate-dependent gene expression of Methylibium petroleiphilum PM1, one of the best-characterized aerobic methyl tert-butyl ether (MTBE)-degrading bacteria. Differential gene expression profiling was conducted with PM1 grown on MTBE and ethanol as sole carbon sources. Based on microarray high scores and protein similarity analysis, an MTBE regulon located on the megaplasmid was identified for further investigation. Putative functions for enzymes encoded in this regulon are described with relevance to the predicted MTBE degradation pathway. A new unique dioxygenase enzyme system that carries out the hydroxylation of tert-butyl alcohol to 2-methyl-2-hydroxy-1-propanol in M. petroleiphilum PM1 was discovered. Hypotheses regarding the acquisition and evolution of MTBE genes as well as the involvement of IS elements in these complex processes were formulated. The pathways for toluene, phenol, and alkane oxidation via toluene monooxygenase, phenol hydroxylase, and propane monooxygenase, respectively, were upregulated in MTBE-grown cells compared to ethanol-grown cells. Four out of nine putative cyclohexanone monooxygenases were also upregulated in MTBE-grown cells. The expression data allowed prediction of several hitherto-unknown enzymes of the upper MTBE degradation pathway in M. petroleiphilum PM1 and aided our understanding of the regulation of metabolic processes that may occur in response to pollutant mixtures and perturbations in the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2168209PMC
http://dx.doi.org/10.1128/AEM.01604-07DOI Listing

Publication Analysis

Top Keywords

petroleiphilum pm1
16
methylibium petroleiphilum
8
methyl tert-butyl
8
tert-butyl ether
8
gene expression
8
mtbe degradation
8
degradation pathway
8
upregulated mtbe-grown
8
mtbe-grown cells
8
pm1
5

Similar Publications

Methyl-tert-butyl ether (MTBE) and its degradation by-product, tert-butyl alcohol (TBA), are widespread contaminants detected frequently in groundwater in California. Since MTBE was used as a fuel oxygenate for almost two decades, leaking underground fuel storage tanks are an important source of contamination. Gasoline components such as BTEX (benzene, toluene, ethylbenzene and xylenes) are often present in mixtures with MTBE and TBA.

View Article and Find Full Text PDF

Gene mdpC plays a regulatory role in the methyl-tert-butyl ether degradation pathway of Methylibium petroleiphilum strain PM1.

FEMS Microbiol Lett

April 2015

Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA Biological Sciences Department, Marquette University, Milwaukee, WI 53201, USA

Among the few bacteria known to utilize methyl tert-butyl ether (MTBE) as a sole carbon source, Methylibium petroleiphilum PM1 is a well-characterized organism with a sequenced genome; however, knowledge of the genetic regulation of its MTBE degradation pathway is limited. We investigated the role of a putative transcriptional activator gene, mdpC, in the induction of MTBE-degradation genes mdpA (encoding MTBE monooxygenase) and mdpJ (encoding tert-butyl alcohol hydroxylase) of strain PM1 in a gene-knockout mutant mdpC(-). We also utilized quantitative reverse transcriptase PCR assays targeting genes mdpA, mdpJ and mdpC to determine the effects of the mutation on transcription of these genes.

View Article and Find Full Text PDF

Methylibium petroleiphilum strain PM1 uses various petroleum products including the fuel additive methyl tert-butyl ether and straight chain and aromatic hydrocarbons as sole carbon and energy sources. It has two operons, dmpI and dmpII, that code for the enzymes in a pair of parallel meta-fission pathways. In order to understand the roles of the pathways, the 4-oxalocrotonate tautomerase (4-OT) isozyme from each pathway was characterized.

View Article and Find Full Text PDF

The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient.

View Article and Find Full Text PDF

Internal loop photobiodegradation reactor (ILPBR) for accelerated degradation of sulfamethoxazole (SMX).

Appl Microbiol Biotechnol

April 2012

College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China.

The internal loop photobiodegradation reactor (ILPBR) was evaluated for the degradation of the pharmaceutical sulfamethoxazole (SMX) using batch experiments following three protocols: photolysis alone (P), biodegradation alone (B), and intimately coupled photolysis and biodegradation (P&B). SMX was removed more rapidly by P&B than by either P or B alone, and the corresponding dissolved organic carbon (DOC) removals by P&B also were higher. The faster SMX removal probably was due to a synergy between photolysis and the rapid biodegradation of SMX by the biofilm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!