Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The frequency distribution of the number of interactions per species (i.e., degree distribution) within plant-animal mutualistic assemblages often decays as a power-law with an exponential truncation. Such a truncation suggests that there are ecological factors limiting the frequency of supergeneralist species. However, it is not clear whether these patterns can emerge from intrinsic features of the interacting assemblages, such as differences between plant and animal species richness (richness ratio). Here, we show that high richness ratios often characterize plant-animal mutualisms. Then, we demonstrate that exponential truncations are expected in bipartite networks generated by a simple model that incorporates build-up mechanisms that lead to a high richness ratio. Our results provide a simple interpretation for the truncations commonly observed in the degree distributions of mutualistic networks that complements previous ones based on biological effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2007.08.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!