A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A hybrid Bayesian network learning method for constructing gene networks. | LitMetric

A hybrid Bayesian network learning method for constructing gene networks.

Comput Biol Chem

Agriculture and Agri-Food Canada, Cereal Research Centre, Winnipeg, MB R3T 2M9, Canada.

Published: October 2007

A Bayesian network (BN) is a knowledge representation formalism that has proven to be a promising tool for analyzing gene expression data. Several problems still restrict its successful applications. Typical gene expression databases contain measurements for thousands of genes and no more than several hundred samples, but most existing BNs learning algorithms do not scale more than a few hundred variables. Current methods result in poor quality BNs when applied in such high-dimensional datasets. We propose a hybrid constraint-based scored-searching method that is effective for learning gene networks from DNA microarray data. In the first phase of this method, a novel algorithm is used to generate a skeleton BN based on dependency analysis. Then the resulting BN structure is searched by a scoring metric combined with the knowledge learned from the first phase. Computational tests have shown that the proposed method achieves more accurate results than state-of-the-art methods. This method can also be scaled beyond datasets with several hundreds of variables.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2007.08.005DOI Listing

Publication Analysis

Top Keywords

bayesian network
8
gene networks
8
gene expression
8
method
5
hybrid bayesian
4
network learning
4
learning method
4
method constructing
4
gene
4
constructing gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!