Natural triterpenoids from Cecropia lyratiloba are cytotoxic to both sensitive and multidrug resistant leukemia cell lines.

Bioorg Med Chem

Lab. de Imunologia Celular, Instituto de Biofísica Carlos Chagas Filho, CCS B1 G, Universidade Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil.

Published: December 2007

The cytotoxicity of four triterpenoids, euscaphic acid (1), tormentic acid (2), 2alpha-acetyl tormentic acid (3), and 3beta-acetyl tormentic acid (4), isolated from the roots of Cecropia lyratiloba (Moraceae) by countercurrent chromatography, was evaluated in vitro in sensitive and multidrug resistant leukemia cell lines. A structure/activity relationship analysis of the compounds was performed. Acetylation of compound 2 at C2 increased its activity by a factor of 2 while acetylation at C3 had a smaller effect. Compound 1 induces death by activation of caspase-3, dependent apoptotic pathway. Furthermore, the four triterpenoids were also active toward a multidrug resistant (MDR) leukemia cell line, overexpressing glycoprotein-P (P-gp). These results reveal the potential of the terpenoids as source for the development of new anti-neoplastic and anti-MDR drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2007.07.020DOI Listing

Publication Analysis

Top Keywords

multidrug resistant
12
leukemia cell
12
tormentic acid
12
cecropia lyratiloba
8
sensitive multidrug
8
resistant leukemia
8
cell lines
8
natural triterpenoids
4
triterpenoids cecropia
4
lyratiloba cytotoxic
4

Similar Publications

Antibody-drug conjugates (ADCs) have emerged as a promising strategy in targeted cancer therapy, enabling the precise delivery of cytotoxic agents to tumor sites while minimizing systemic toxicity. However, traditional ADCs face significant limitations, including restricted drug loading capacity, where an optimal drug-to-antibody ratio (DAR) is crucial; low DARs may lead to insufficient potency, while high DARs can cause rapid clearance and increased toxicity. Additionally, ADCs often suffer from instability in circulation due to the potential for premature release of cytotoxic agents, resulting in off-target effects and reduced therapeutic efficacy.

View Article and Find Full Text PDF

A Comprehensive Review on Exploring the Potential of Phytochemicals and Biogenic Nanoparticles for the Treatment of Antimicrobial-Resistant Pathogenic Bacteria.

Curr Microbiol

January 2025

Molecular Biology Laboratory, Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India.

Antimicrobial resistance (AMR) is an escalating global health concern that results in approximately 700,000 deaths annually owing to drug-resistant infections. It compromises the effectiveness of conventional antibiotics, as well as fundamental medical procedures, such as surgery and cancer treatment. Phytochemicals, natural plant constituents, and biogenic nanoparticles synthesized through biological processes are pharmacological alternatives for supplementing or replacing traditional antibiotics.

View Article and Find Full Text PDF

The widespread use of antibiotics has led to the emergence of multidrug-resistant bacteria, which pose significant threats to animal health and food safety. Host defense peptides (HDPs) have emerged as promising alternatives because of their unique antimicrobial properties and minimal resistance induction. However, the high costs associated with HDP production and incorporation into animal management practices hinder their widespread application.

View Article and Find Full Text PDF

Multifunctional Mycobacterial Topoisomerases with Distinctive Features.

ACS Infect Dis

January 2025

Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.

Tuberculosis (TB) continues to be a major cause of death worldwide despite having an effective combinatorial therapeutic regimen and vaccine. Being one of the most successful human pathogens, retains the ability to adapt to diverse intracellular and extracellular environments encountered by it during infection, persistence, and transmission. Designing and developing new therapeutic strategies to counter the emergence of multidrug-resistant and extensively drug-resistant TB remains a major task.

View Article and Find Full Text PDF

Objective: To determine the frequency of multidrug-resistant (MDR) bacterial isolates in respiratory specimens obtained from ventilated patients admitted to critical care units at the National Institute of Cardiovascular Diseases (NICVD), along with COVID-19-positive cases.

Study Design: An observational study. Place and Duration of the Study: National Institute of Cardiovascular Diseases, between November 2021 and March 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!