Mevalonate 5-diphosphate decarboxylase plays an important role in regulating cholesterol biosynthesis, which was studied through incubation with various synthetic substrate analogs and characterization of mutated enzymes. The results are potentially useful for further developing inhibitors that block the mevalonate pathway which is a drug target for treating cardiovascular disease and cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2007.09.033 | DOI Listing |
Adv Sci (Weinh)
April 2023
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, P. R. China.
Insect Biochem Mol Biol
November 2022
State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China. Electronic address:
Phosphomevalonate kinase (PMK) is an important enzyme involved in the juvenile hormone (JH) biosynthesis pathway that catalyzes the phosphorylation of mevalonate 5-phosphate into mevalonate 5-diphosphate in the mevalonate pathway. Herein, we report the crystal structure of insect PMK from Bombyx mori (BmPMK) at a resolution of 1.60 Å.
View Article and Find Full Text PDFFish Shellfish Immunol
September 2022
Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China. Electronic address:
The sea cucumber Apostichopus japonicus is one of the most dominant and economically important aquaculture species in China. Saponin, which possesses notable biological and pharmacological properties, is a key determinant of the nutritional and health value of A. japonicus.
View Article and Find Full Text PDFFront Pharmacol
June 2021
Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.
The use of metabolomics as a comprehensive tool in the analysis of metabolic profiles in disease progression and therapeutic intervention is rapidly advancing. Yet, a single analytical platform could not be applied to cover the entire spectrum of a biological sample's metabolome. In the present paper, multi-platform metabolomics approaches were explored to determine the diverse rat sera metabolites extracted from intracerebroventricular lipopolysaccharides (LPS)-induced neuroinflammed rats treated with oral therapeutic interventions of positive drug (dextromethorphan, 5 mg/kg BW); with Clinacanthus nutans (CN) aqueous extract (CNE, 500 mg/kg BW); and with phosphate buffer saline (PBS) as the control group for 14 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!