Role of spinal serotonin 5-HT2A receptor in 2',3'-dideoxycytidine-induced neuropathic pain in the rat and the mouse.

Pain

Neurobiologie des Signaux Intercellulaires, CNRS, UMR 7101, Université Pierre et Marie Curie, 7 Quai St Bernard, 75252 Paris cedex 05, France INSERM UMR 677, Université Pierre et Marie Curie-Paris 6, Faculté de Médecine, site Pitié-Salpêtrière, 91 boulevard de l'Hôpital, 75634 Paris cedex 13, France Department of Psychiatry, Columbia University, New York, NY 10032, USA.

Published: July 2008

Several lines of evidence suggest that descending serotoninergic facilitatory pathways are involved in neuropathic pain. These pathways may involve 5-HT2A receptors known to play a role in spinal and peripheral sensitization. The implication of this receptor in neuropathy was investigated in a model of peripheral neuropathy induced by 2',3'-dideoxycytidine, a nucleoside analogue with reverse transcriptase inhibitory properties used in HIV/AIDS therapy. Four days after a single 100mg/kg i.v. administration in the tail vein, mitochondrial alterations in nociceptive and non-nociceptive dorsal root ganglion cells were observed at the lumbar level. These alterations were not associated with TUNEL labelling or with modification of the total number of dorsal root ganglion cells. At the same time point, 5-HT2A receptor immunolabelling was increased throughout the dorsal horn (by 49.5% in layer II and 57.8% in layer III). The number of 5-HT2A receptor immunoreactive neurons in the dorsal root ganglion was also increased by 30.7%. Four days after 2',3'-dideoxycytidine administration, rats had developed thermal allodynia as well as mechanical hyperalgesia and allodynia, which dose-dependently decreased after epidural injection of MDL 11,939, a 5-HT2A receptor antagonist. Moreover, 5-HT2A receptor knock-out mice did not develop 2',3'-dideoxycytidine-induced neuropathy whereas their control littermates displayed a neuropathy comparable to that observed in rats. Our data show that 2',3'-dideoxycytidine-induced neuropathy is associated with alterations of nociceptive and non-nociceptive peripheral cells and that the 5-HT2A receptor is involved in the peripheral sensitization of nociceptors as well as in a wide central sensitization of dorsal horn neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pain.2007.08.014DOI Listing

Publication Analysis

Top Keywords

5-ht2a receptor
24
dorsal root
12
root ganglion
12
role spinal
8
neuropathic pain
8
peripheral sensitization
8
alterations nociceptive
8
nociceptive non-nociceptive
8
ganglion cells
8
dorsal horn
8

Similar Publications

Investigating the Mechanisms Involved in Scopolamine-induced Memory Degradation.

Arch Razi Inst

June 2024

Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.

In the present study, the mechanisms involved in scopolamine-induced memory impairment have been investigated. The molecular events that take place during memory mostly include mechanisms that are seen in the acquisition phase. Results showed that one of the mechanisms of memory destruction caused by scopolamine, in addition to weakening the cholinergic system, is the indirect effect of scopolamine on other neurotransmitter systems, including the glutamatergic system.

View Article and Find Full Text PDF

Dimethyltryptamine (DMT) and ibogaine elicit membrane effects in HEK cells transiently transfected with the human 5-HT2A receptor.

Brain Res

December 2024

Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark. Electronic address:

Psychedelics show promise in treating psychiatric disorders. Therapeutic effects appear to involve activation of the 5-Hydroxytryptamine 2A receptor (5-HTR), a G protein-coupled receptor (GPCR). Several SNPs of the 5-HTR naturally occur, which are associated with differences in receptor function and altered responsiveness to treatments.

View Article and Find Full Text PDF

Background: Substance use disorders are multifaceted conditions influenced by both genetic and environmental factors. Serotonergic pathways are known to be involved in substance use disorder susceptibility, with genetic markers within serotonin receptor genes identified as potential risk factors.

Methods: To further explore this relationship, we conducted a study to investigate the association between several polymorphisms in five serotonin receptor genes (, , ) and substance use disorders (SUD) in Jordanian males by sequencing genotypes in 496 SUD patients and 496 healthy controls.

View Article and Find Full Text PDF

Design of Small Non-Peptidic Ligands That Alter Heteromerization between Cannabinoid CB and Serotonin 5HT Receptors.

J Med Chem

January 2025

Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain.

Activation of cannabinoid CB receptors (CBR) by agonists induces analgesia but also induces cognitive impairment through the heteromer formed between CBR and the serotonin 5HT receptor (5HTR). This side effect poses a serious drawback in the therapeutic use of cannabis for pain alleviation. Peptides designed from the transmembrane helices of CBR, which are predicted to bind 5HTR and alter the stability of the CBR-5HTR heteromer, have been shown to avert CBR agonist-induced cognitive impairment while preserving analgesia.

View Article and Find Full Text PDF

Introduction: Substance use disorders (SUDs) are a public health issue, with only some having FDA-approved indicated treatments and these having high attrition. Consequently, there has been interest in novel interventions (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!