Plant products such as perillyl alcohol have been reported to possess anti-tumor activities against a number of human cancers though the mechanism of action has not yet been elucidated. The effects of perillyl alcohol (POH) and its metabolite perillic acid (PA) on the proliferation of non small cell lung cancer (NSCLC, A549, and H520) cells were investigated. Both POH and PA elicited dose-dependent cytotoxicity, induced cell cycle arrest and apoptosis with increasing expression of bax, p21 and caspase-3 activity in both the cell lines. Combination studies revealed that exposing the cells to an IC50 concentration of POH or PA sensitized the cells to cisplatin and radiation in a dose-dependent manner. These results indicate that POH and PA in combination therapy may have chemotherapeutic value against NSCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2007.07.020DOI Listing

Publication Analysis

Top Keywords

perillyl alcohol
12
perillic acid
8
induced cell
8
cell cycle
8
cycle arrest
8
arrest apoptosis
8
small cell
8
cell lung
8
lung cancer
8
cell
5

Similar Publications

Oxidation of myrtenol to myrtenal epoxide in a porphyrin-based photocatalytic system - A novel terpene alcohol derivative with antimicrobial and anticancer properties.

Bioorg Chem

December 2024

Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland. Electronic address:

Biomimetic catalysis using porphyrins enables gentle oxidation of terpenes with molecular oxygen and light. This study explores the photooxidation of (-)-myrtenol under visible light to synthesize new terpenoid products with promising biological activity. Among the porphyrins tested, tetraphenylporphyrin (HTPP) exhibited the highest catalytic efficiency and stability in chloroform, producing myrtenal epoxide (ME) as the main product (with a molar conversion of myrtenol of 66.

View Article and Find Full Text PDF

Characterization and catalytic activity of Co/Mo-modified activated carbons derived from orange peels in limonene oxidation.

Environ Sci Pollut Res Int

December 2024

Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland.

The possibility of using orange peels for the preparation of porous activated carbons by the chemical activation with HPO and the application of the obtained carbonaceous materials as the metal catalyst supports was investigated. Activated carbon and carbon-metal materials were used as the limonene oxidation catalysts. The materials were characterized by the following instrumental methods: the sorption of N2 at-196 °C, XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy) and SEM (Scanning Electron Microscope), XPS (The X-ray photoelectron spectroscopy).

View Article and Find Full Text PDF

Background/objectives: Perillyl alcohol (POH), a plant-derived compound, has demonstrated anti-tumor activity across various human cancers. Understanding the regulatory pathways through which POH exerts its effects is crucial for identifying new therapeutic opportunities and exploring potential drug repositioning strategies. Therefore, this scoping review aims to provide a comprehensive overview of the metabolic and regulatory pathways involved in the anticancer effects of POH, based on in vitro evidence.

View Article and Find Full Text PDF

Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe disease with a poor prognosis, whose clinical treatment is still limited to therapeutic hypothermia with limited efficacy. Perillyl alcohol (POH), a natural monoterpene found in various plant essential oils, has shown neuroprotective properties, though its effects on HIE are not well understood. This study investigates the neuroprotective effects of POH on HIE both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!