Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that affect nervous system function. Glial cells are among the first lines of defense in the nervous system and are involved in activities, including production of neurotrophic factors, which maintain an environment optimally suited for neuronal function. In this study, we investigated the effects of a commercial mixture of PCBs, Aroclor 1254 (A1254), on neurotrophic factor secretion by C6 cells in culture. C6 cells were exposed to medium containing 10 ppm A1254, 0.1% dimethyl sulfoxide (DMSO=vehicle), or normal culture medium. Glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) protein were measured by enzyme-linked immunosorbant assay. GDNF mRNA was measured by real-time RT-PCR. The role of protein kinase C (PKC) signaling in A1254 effects was investigated using bisindolylmaleimide, a PKC antagonist. Exposure to A1254 increased NGF (8.8x10(-5)+/-8.2x10(-6)pg NGF/cell) and GDNF (1.0x10(-4)+/-6.7x10(-6)pg GDNF/cell) secretion compared to DMSO treated controls (5.0x10(-5)+/-7.5x10(-6)pg NGF/cell and 6.2x10(-5)+/-3.1x10(-6)pg GDNF/cell). The effect of A1254 was long-lived, as GDNF secretion was elevated following 5 days of exposure (4.1x10(-5)+/-1.7x10(-6)pg GDNF/cell in A1254 exposed cells vs. 2.9x10(-5)+/-2.3x10(-6)pg GDNF/cell in DMSO exposed cells). GDNF mRNA expression was also elevated following exposure to A1254 (1.14+/-0.07 gene expression units in A1254 exposed cells vs. 0.8+/-0.07 gene expression units in DMSO exposed cells). Bisindolylmaleimide was able to block the effects of A1254 on GDNF secretion. Thus, one potential mechanism by which PCBs may alter nervous system function is via disruption of neurotrophic factor expression by glial cells. The observation that neurotrophic factor expression was increased following exposure to PCB may suggest that glial cells increase expression of neuroprotective genes following exposure to potentially damaging agents such as PCBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuro.2007.08.005 | DOI Listing |
Research (Wash D C)
January 2025
Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Sepsis-associated encephalopathy (SAE) is a severe and frequent septic complication, characterized by neuronal damage as key pathological features. The astrocyte-microglia crosstalk in the central nervous system (CNS) plays important roles in various neurological diseases. However, how astrocytes interact with microglia to regulate neuronal injury in SAE is poorly defined.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Stark Neurosciences Research Institute, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
Over recent years, the retina has been increasingly investigated as a potential biomarker for dementia. A number of studies have looked at the effect of Alzheimer's disease (AD) pathology on the retina and the associations of AD with visual deficits. However, while OCT-A has been explored as a biomarker of cerebral small vessel disease (cSVD), studies identifying the specific retinal changes and mechanisms associated with cSVD are lacking.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Department of Anatomy and Neuroscience, Institute of Medicine, University of Tsukuba, 1-1- 1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
Objective: Reactivity of microglia, the resident cells of the brain, underlies innate immune mechanisms (e.g., injury repair), and disruption of microglial reactivity has been shown to facilitate psychiatric disorder dysfunctions.
View Article and Find Full Text PDFNat Commun
January 2025
Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
Oligodendrocyte precursor cells (OPCs) shape brain function through many non-canonical regulatory mechanisms beyond myelination. Here we show that OPCs form contacts with their processes on neuronal somata in a neuronal activity-dependent manner. These contacts facilitate exocytosis of neuronal lysosomes.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania. Electronic address:
S100 calcium-binding protein A9 (S100A9, also known as calgranulin B) is expressed and secreted by myeloid cells under inflammatory conditions, and S100A9 can amplify inflammation. There is a large increase in S100A9 expression in the brains of patients with neurodegenerative diseases, such as Alzheimer's disease, and S100A9 has been suggested to contribute to neurodegeneration, but the mechanisms are unclear. Here we investigated the effects of extracellular recombinant S100A9 protein on microglia, neurons and synapses in primary rat brain neuronal-glial cell cultures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!