N150 in amygdalar ERPs in the rat: is there modulation by anticipatory fear?

Physiol Behav

Radboud University Nijmegen, Nijmegen Institute for Cognition and Information, Department of Biological Psychology, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands.

Published: January 2008

The hypothesis was tested whether the amygdalar N150 of rats, a slow, negative component in the event-related potential from the lateral amygdala, is sensitive to a state of anxious anticipation. A conditioning procedure was applied in which a series of six auditory stimuli was followed by a shock when presented alone, but not when the auditory stimuli were preceded by a visual stimulus. Heart rate recordings confirmed that the auditory stimulus train induced a state of increasing anticipatory fear and that this condition was modulated by the visual stimulus. During behavioral training, a N150 appeared in the amygdalar event-related potential evoked by the auditory stimuli, replicating previous findings. However, the amplitude of the N150 was not affected by whether or not the visual stimulus had been presented before. These results failed to support the idea that the N150 is related to the expectancy of an aversive event. An alternative interpretation, emphasizing the increase in arousal and attention that is inherent to aversive learning, is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2007.08.015DOI Listing

Publication Analysis

Top Keywords

auditory stimuli
12
visual stimulus
12
event-related potential
8
n150
5
n150 amygdalar
4
amygdalar erps
4
erps rat
4
rat modulation
4
modulation anticipatory
4
anticipatory fear?
4

Similar Publications

Duration adaptation depends on the perceived rather than physical duration and can be observed across sensory modalities.

Perception

January 2025

State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China; Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, China.

Previous research has indicated that exposure to sensory stimuli of short or long durations influences the perceived duration of subsequent stimuli within the same modality. However, it remains unclear whether this adaptation is driven by the stimulus physical duration or by the perceived duration. We hypothesized that the absence of cross-modal duration adaptation observed in earlier studies was due to the mismatched perceived durations of adapting stimuli.

View Article and Find Full Text PDF

Gamma oscillations are disrupted in various neurological disorders, including Alzheimer's disease (AD). In AD mouse models, non-invasive audiovisual stimulation (AuViS) at 40 Hz enhances gamma oscillations, clears amyloid-beta, and improves cognition. We investigated mechanisms of circuit remodeling underlying these restorative effects by leveraging the sensitivity of hippocampal neurogenesis to activity in middle-aged wild-type mice.

View Article and Find Full Text PDF

A stimulus with light is clearly visual; a stimulus with sound is clearly auditory. But what makes a stimulus "social", and how do judgments of socialness differ across people? Here, we characterize both group-level and individual thresholds for perceiving the presence and nature of a social interaction. We take advantage of the fact that humans are primed to see social interactions-e.

View Article and Find Full Text PDF

Evidence suggests that attenuated mismatch negative (MMN) waves have a close link to auditory verbal hallucinations (AVH) and their clinical outcomes, especially impaired neural oscillations such as θ, β representing attentional control. In current study, thirty patients with schizophrenia and AVH (SZ) and twenty-nine healthy controls (HC) underwent multi-feature MMN paradigm measurements including frequency and duration deviant stimuli (fMMN and dMMN). Clinical symptoms and MMN paradigm were followed up among SZ group after 8-week treatment.

View Article and Find Full Text PDF

Supporting rotational grazing systems with virtual fencing: paddock transitions, beef heifer performance, and stress response.

Animal

December 2024

Department of Crop Sciences, Grassland Science, Georg-August-University Göttingen, Von-Siebold-Strasse 8, 37075 Göttingen, Germany; Centre for Biodiversity and Sustainable Land Use, Büsgenweg 1, 37075 Göttingen, Germany.

Animal welfare is integral to sustainable livestock production, and pasture access for cattle is known to enhance welfare. Despite positive welfare impacts, high labour requirements hinder the adoption of sustainable grazing practices such as rotational stocking management. Virtual fencing (VF) is an innovative technology for simplified, less laborious grazing management and remote animal monitoring, potentially facilitating the expansion of sustainable livestock production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!