Background: Colonic diverticular disease is a bothersome condition with an unresolved pathogenesis. It is unknown whether a neuroepithelial dysfunction is present. The aim of the study was two-fold; (1) to investigate colonic epithelial ion transport in patients with diverticulosis and (2) to adapt a miniaturized Modified Ussing Air-Suction (MUAS) chamber for colonic endoscopic biopsies.

Methods: Biopsies were obtained from the sigmoid part of the colon. 86 patients were included. All patients were referred for colonoscopy on suspicion of neoplasia and they were without pathological findings at colonoscopy (controls) except for diverticulosis in 22 (D-patients). Biopsies were mounted in MUAS chambers with an exposed area of 5 mm2. Electrical responses to various stimulators and inhibitors of ion transport were investigated together with histological examination. The MUAS chamber was easy to use and reproducible data were obtained.

Results: Median basal short circuit current (SCC) was 43.8 microA x cm(-2) (0.8 - 199) for controls and 59.3 microA x cm(-2) (3.0 - 177.2) for D-patients. Slope conductance was 77.0 mS x cm(-2) (18.6 - 204.0) equal to 13 Omega x cm(2) for controls and 96.6 mS x cm(-2) (8.4 - 191.4) equal to 10.3 Omega x cm(2) for D-patients. Stimulation with serotonin, theophylline, forskolin and carbachol induced increases in SCC in a range of 4.9 - 18.6 microA x cm(-2), while inhibition with indomethacin, bumetanide, ouabain and amiloride decreased SCC in a range of 6.5 - 27.4 microA x cm(-2), and all with no significant differences between controls and D-patients. Histological examinations showed intact epithelium and lamina propria before and after mounting for both types of patients.

Conclusion: We conclude that epithelial ion transport is not significantly altered in patients with diverticulosis and that the MUAS chamber can be adapted for studies of human colonic endoscopic biopsies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064914PMC
http://dx.doi.org/10.1186/1471-230X-7-37DOI Listing

Publication Analysis

Top Keywords

ion transport
16
microa cm-2
16
epithelial ion
12
patients diverticulosis
12
muas chamber
12
colonic epithelial
8
transport patients
8
colonic endoscopic
8
omega cm2
8
scc range
8

Similar Publications

Enhancer RNA (eRNA) has emerged as a key player in cancer biology, influencing various aspects of tumor development and progression. In this study, we investigated the role of eRNAs in kidney renal clear cell carcinoma (KIRC), the most common subtype of renal cell carcinoma. Leveraging high-throughput sequencing data and bioinformatics analysis, we identified differentially expressed eRNAs in KIRC and constructed eRNA-centric regulatory networks.

View Article and Find Full Text PDF
Article Synopsis
  • Enhancing transport and mechanical properties in cathode composites is essential for solid-state battery performance.
  • The FAST electrode features vertically aligned carbon nanotubes in a polymer electrolyte, improving ionic and electronic conductivity while reinforcing the electrode.
  • This innovative design leads to excellent electrochemical performance, achieving a capacity of 148.2 mAh/g at 0.2 C over 100 cycles, indicating progress in solid-state lithium metal battery technology.
View Article and Find Full Text PDF

We present a strategy for enhancing Li conduction in block copolymer electrolytes by introducing trace amounts of Li salts into polystyrene--poly(ethylene oxide) (PS--PEO), wherein Li ions preferentially coordinate with the -OH end groups of the PEO chains, resulting in the formation of double primitive cubic (3̅) structures. Compared with TFSI anions in Li salts, smaller anions (PF and BF) could facilitate ion localization more effectively, expanding the salt concentration range for developing stable 3̅ structures. The 3̅ structures formed in PS--PEOs doped with LiBF at = 0.

View Article and Find Full Text PDF

Entropy generation and water conservation in the mammalian nephron.

J Comp Physiol B

January 2025

Departamento de Fisiologia, Instituto de Biociências da Universidade de São Paulo, São Paulo, Brazil.

During the transition from fresh waters to terrestrial habitats, significant adaptive changes occurred in kidney function of vertebrates to cope with varying osmotic challenges. We investigated the mechanisms driving water conservation in the mammalian nephron, focusing on the relative contributions of active ion transport and Starling forces. We constructed a thermodynamic model to estimate the entropy generation associated with different processes within the nephron, and analyzed their relative importance in urine formation.

View Article and Find Full Text PDF

Background: Glial cells exhibit distinct transcriptional responses to β-amyloid pathology in Alzheimer's disease (AD). While sophisticated single-cell based methods have revealed heterogeneous glial subpopulations in the human AD brain, the histological localization of these multicellular responses to AD pathology has not been fully characterized due to the loss of spatial information. Here, we combined spatial transcriptomics (ST) with immunohistochemistry to explore the molecular mechanisms in the neuritic plaque niche.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!