By means of X-ray photoelectron spectroscopy (XPS) and differential scanning calorimetry (DSC), this study set out to investigate the application of plasma immersion ion implantation (PIII) for the surface modification of ProTaper NiTi rotary instruments. This study was undertaken because the PIII method was perceived to have the potential of developing into a standard surface modification technique that improves clinical quality and outcome. Specimens received nitrogen ion or nitrogen plus argon ion implantation. XPS analyses with and without argon ion etching were obtained for all specimens. In addition, DSC analysis was performed to investigate the phase transformation behavior of the bulk material. Results indicated that the surfaces of NiTi instruments were successfully modified by nitrogen PIII, whereby a light golden TiN layer was yielded. Moreover, the PIII technique did not alter the superelastic character of NiTi instruments because it was carried out at near-room temperature. We thus concluded that nitrogen PIII is a promising surface modification technique to improve the surface characteristics of NiTi rotary instruments.

Download full-text PDF

Source
http://dx.doi.org/10.4012/dmj.26.467DOI Listing

Publication Analysis

Top Keywords

surface modification
16
ion implantation
12
rotary instruments
12
application plasma
8
plasma immersion
8
immersion ion
8
niti rotary
8
modification technique
8
argon ion
8
niti instruments
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!