Increased ambient air particulate matter (PM) concentrations are associated with risk for myocardial infarction, stroke, and arrhythmia, and ultrafine PM (UFPM) might be particularly toxic to the cardiovascular system. Recent epidemiological studies are beginning to offer mechanistic insights, yet the rodent model remains a valuable tool to explore potential mechanisms. This article reviews a series of studies from our laboratory demonstrating the promise of mouse models to link health effects to biological mechanisms. Specifically, data from 6- to 10-wk-old male ICR mice exposed to intratracheal instillation of 100 microg of UFPM collected from the Chapel Hill, NC airshed are described. Studies of ischemia/reperfusion, vascular function, and hemostasis are described. In summary, UFPM exposure doubles the size of myocardial infarction attendant to an episode of ischemia and reperfusion while increasing postischemic oxidant stress. UFPM alters endothelial-dependent and -independent regulation of systemic vascular tone; increases platelet number, plasma fibrinogen, and soluble P-selectin levels; and reduces bleeding time, implying enhanced thrombogenic potential. Taking these findings together, this model of acute UFPM exposure in the mouse indicates that UFPM induces a prothrombotic state and decreases vasomotor responsiveness, thereby offering insight into how UFPM could contribute to vascular events associated with thrombosis and ischemia and increasing the extent of infarction.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08958370701493456DOI Listing

Publication Analysis

Top Keywords

particulate matter
8
myocardial infarction
8
ufpm exposure
8
ufpm
7
cardiac vascular
4
vascular changes
4
changes mice
4
mice exposure
4
exposure ultrafine
4
ultrafine particulate
4

Similar Publications

Malnutrition and PM pollution remain a pressing global public health concern, especially to vulnerable populations like children under five years old. This study aimed to investigate the correlation between undernutrition in children under five years old and air pollution (exposure to PM) on a global scale. This ecological study evaluated the correlation between undernutrition (wasting and stunting) and air pollution in 123 countries.

View Article and Find Full Text PDF

Modelling of pollutants provides valuable insights into air quality dynamics, aiding exposure assessment where direct measurements are not viable. Machine learning (ML) models can be employed to explore such dynamics, including the prediction of air pollution concentrations, yet demanding extensive training data. To address this, techniques like transfer learning (TL) leverage knowledge from a model trained on a rich dataset to enhance one trained on a sparse dataset, provided there are similarities in data distribution.

View Article and Find Full Text PDF

Summer urban synergistic effects of anthropogenic pollutants and low-molecular-weight biogenic volatile organic compounds on secondary organic aerosol presented by PM.

Sci Total Environ

January 2025

School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai 200240, China. Electronic address:

Biogenic volatile organic compounds (BVOCs) are emitted by urban vegetation and can interact with anthropogenic pollutants to generate secondary organic aerosols (SOA) that are atmospheric pollutants in urban environments. In urban forests, SOA comprise up to 90 % of all fine aerosols (particulate matter smaller than 1 μm [PM]) in the summer. PM can greatly affect urban air quality and public health.

View Article and Find Full Text PDF

Ultraviolet radiation vs air filtration to mitigate virus laden aerosol in an occupied clinical room.

J Hazard Mater

January 2025

Monash Lung, Sleep, Allergy and Immunology, Monash Health, Melbourne, VIC, Australia; School of Clinical Sciences, Monash University, Melbourne, VIC, Australia; Monash Partners - Epworth, Melbourne, VIC, Australia.

Mitigation measures against infectious aerosols are desperately needed. We aimed to: 1) compare germicidal ultraviolet radiation (GUV) at 254 nm (254-GUV) and 222 nm (222-GUV) with portable high efficiency particulate air (HEPA) filters to inactivate/remove airborne bacteriophage ϕX174, 2) measure the effect of air mixing on the effectiveness of 254-GUV, and 3) determine the relative susceptibility of ϕX174, SARS-CoV-2, and Influenza A(H3N2) to GUV (254 nm, 222 nm). A nebulizer generated ϕX174 laden aerosols in an occupied clinical room (sealed-low flow).

View Article and Find Full Text PDF

Associations and potential epigenetic changes between air pollution and osteoarthritis risk and survival: Insights from a prospective cohort study.

Ecotoxicol Environ Saf

January 2025

Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China. Electronic address:

Background: The influence of air pollution on osteoarthritis (OA) remains underexplored.

Methods: We conducted a prospective cohort study in the UK Biobank, estimating exposure levels of particulate matter (PM, PM, PM) nitrogen oxides (NO, NO), and air pollutants exposure score (APES). Cox models assessed associations between air pollution exposure and OA incidence, joint replacement, and survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!