The aim of the present study is to observe the influence of long-term exposure to radar radiation on breeding biology of tits (Parus sp.), living and building nests around a military radar station, emitting pulse-modulated microwave radiation of 1,200-3,000 MHz. Two series of 36 nest-boxes each were located on the radar station area. Measurements of exposure were performed separately for each nest-box. Average power density (P(av), W/m(2)) and dose of exposure (W/m(2) x h) were recorded for each nest-box during 45 days. Control nest-boxes (N = 42) were located in other part of the same forests, free from radar radiation. The assessment of effects of radar exposure on breeding biology of tits included number of inhabited nest-boxes, number of eggs, and nestlings in the nest (Why not chick mortality?). Experimental nest-boxes were either exposed to relatively high levels of radiation (2.0-5.0 W/m(2), mean 3.41 +/- 1.38 W/m(2)) or an intermediate level of radiation that ranged from 0.1-2.0 W/m(2) (mean 1.12 +/- 0.84 W/m(2)). For control nest-boxes the exposure ranged from 0.001-0.01 W/m(2) (mean 0.0062 +/- 0.0007 W/m(2)). Only blue or great tits occupied all nest-boxes, used in the experiment. The number of nesting blue tits was higher in nest-boxes located on the radar station area than in the control boxes. In contrast, control nest-boxes were inhabited mainly by great tits. On the radar station area, blue tits nested in high exposed nest-boxes (67,0%) and great tit occupied mainly these boxes, which were exposed to low-level radiation (62,5%), the difference being statistically significant (p < 0.01). No statistically significant differences in other parameters of breeding biology (number of eggs per box, number of nestling per box) were observed between tits occupying exposed and control nest boxes. Results of the present study show that radar radiation generally does not lead to decrease of number of nesting tits, but may cause shifts in tits species living around the radar station. (But is the microhabitat, apart from the radiation level, around each nest box more likely to attract one species of tit or another?).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15368370701357841 | DOI Listing |
Sensors (Basel)
January 2025
Institute of Telecommunications, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland.
In this paper, the idea of a radar based on orthogonal frequency division multiplexing (OFDM) is applied to 5G NR Positioning Reference Signals (PRS). This study demonstrates how the estimation of the communication channel using the PRS can be applied for the identification of objects moving near the 5G NR receiver. In this context, this refers to a 5G NR base station capable of detecting a high-speed train (HST).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Laboratory of Target Microwave Properties, Deqing Academy of Satellite Applications, Deqing 313200, China.
Using microwave remote sensing to invert forest parameters requires clear canopy scattering characteristics, which can be intuitively investigated through scattering measurements. However, there are very few ground-based measurements on forest branches, needles, and canopies. In this study, a quantitative analysis of the canopy branches, needles, and ground contribution of Masson pine scenes in C-, X-, and Ku-bands was conducted based on a microwave anechoic chamber measurement platform.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nadu, India.
Knowledge of soil temperature (ST) is important for analysing environmental conditions and climate change. Moreover, ST is a vital element of soil that impacts crop growth as well as the germination of the seeds. In this study, four machine-learning (ML) paradigms including random forest (RF), radial basis neural network (RBNN), multi-layer perceptron neural network (MLPNN), and co-active neuro-fuzzy inference system (CANFIS) were used for estimation of daily ST at different soil depths (i.
View Article and Find Full Text PDFSci Data
December 2024
Center for Coastal and Ocean Mapping, University of New Hampshire, Durham, NH, USA.
Knowledge about seafloor depth, or bathymetry, is crucial for various marine activities, including scientific research, offshore industry, safety of navigation, and ocean exploration. Mapping the central Arctic Ocean is challenging due to the presence of perennial sea ice, which limits data collection to icebreakers, submarines, and drifting ice stations. The International Bathymetric Chart of the Arctic Ocean (IBCAO) was initiated in 1997 with the goal of updating the Arctic Ocean bathymetric portrayal.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Henan Key Laboratory of Agricultural Pest Monitoring and Control, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
The fall armyworm, (Lepidoptera: Noctuidae) (FAW), is an invasive and destructive polyphagous pest that poses a significant threat to global agricultural production. The FAW mainly damages maize, with a particular preference for V3-V5 (third to fifth leaf collar) plant stages in northern China. How the FAW moth precisely locates maize plants in the V3-V5 stage at night remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!