Purpose: To prospectively evaluate the sensitivity and specificity of proton (hydrogen 1 [1H]) magnetic resonance (MR) spectroscopy for diagnosing malignant enhancing nonmass lesions identified at breast MR imaging, with histologic examination as the reference standard.
Materials And Methods: In this HIPAA-compliant, institutional review board-approved study, in which all participants gave written informed consent, proton (1H) MR spectroscopy of the breast was performed in suspicious or biopsy-proved malignant lesions that were 1 cm or larger at MR imaging. Single-voxel proton (1H) MR spectroscopic data were collected. MR spectroscopic findings were defined as positive if the signal-to-noise ratio of the choline resonance peak was 2 or greater and as negative in all other cases. MR spectroscopic results were then compared with histologic findings, and statistical analysis was performed.
Results: In 32 women (median age, 48.5 years [range, 20-63 years]) with enhancing nonmass lesions, the median lesion size at MR imaging was 2.8 cm (range, 1.2-9.0 cm). At histologic analysis, 12 (37%) of 32 lesions were malignant and 20 (63%) were benign. Positive choline findings were present in 15 of 32 lesions, including all 12 (100%) cancers and three (15%) of 20 benign lesions, giving proton (1H) MR spectroscopy a sensitivity of 100% (95% confidence interval [CI]: 74%, 100%) and a specificity of 85% (95% CI: 62%, 97%) for detection of enhancing nonmass lesions. For 25 lesions with unknown histologic features, proton (1H) MR spectroscopy would have significantly (P<.01) increased the positive predictive value of biopsy from 20% to 63%. If biopsy had been performed for only those lesions with positive choline findings at proton (1H) MR spectroscopy, biopsy might have been avoided for 17 (68%) of 25 lesions, and no cancers would have been missed.
Conclusion: Proton (1H) MR spectroscopy had 100% sensitivity and 85% specificity for the detection of malignancy in enhancing nonmass lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.2451061639 | DOI Listing |
Int J Gen Med
January 2025
Department of Radiology, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China.
Purpose: To evaluate the use of contrast enhanced mammography (CEM) in suspicious microcalcifications and to discuss strategies to cope with its diagnostic limitations.
Methods: We retrospectively evaluated patients with suspicious calcifications who underwent CEM at our institution. We collected and analyzed morphological findings, enhancement patterns and pathological findings of suspicious microcalcifications on CEM.
Quant Imaging Med Surg
January 2025
Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
Background: Breast imaging reporting and data system (BI-RADS) provides standard descriptors but not detailed decision rules for characterizing breast lesions. Diffusion-weighted imaging (DWI) and T2-weighted imaging (T2WI) are also not incorporated in the BI-RADS. Several multiparametric magnetic resonance imaging (mpMRI)-based decision rules have been developed to differentiate breast lesions, but lack external validation.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Diagnostic and Interventional Radiology, University Hospital Split, Spinčićeva 1, 21000 Split, Croatia.
Curr Probl Diagn Radiol
January 2025
Department of Medical Imaging, University of Arizona, 1501 N Campbell Ave, Tucson AZ 85724, USA; Banner University Medical Center Tucson, 1625 N Campbell Ave, Tucson AZ 85719, USA.
Breast magnetic resonance imaging (MRI) has the highest sensitivity for breast cancer detection compared to other breast imaging modalities such as mammography and ultrasound. As a functional modality, it captures the increased angiogenic activity of breast cancer through gadolinium-based contrast enhancement. Normal breast tissue also enhances, albeit in distinct patterns termed background parenchymal enhancement (BPE).
View Article and Find Full Text PDFGland Surg
November 2024
Department of Ultrasound, Chinese People's Liberation Army General Hospital, Beijing, China.
Background: Ductal carcinoma in situ with microinvasion (DCISM) represents 1% of all breast cancer cases and is arguably a more aggressive subtype of ductal carcinoma in situ (DCIS). Preoperative evaluation of DCISM usually relies on core needle biopsy, and non-invasive evaluation methods are relatively limited. This study aims to explore the features of conventional ultrasound (US) and contrast-enhanced ultrasound (CEUS) in DCISM and to analyze the US and clinicopathological predictors of infiltrating components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!