Amyloid precursor protein (APP) is involved in the pathogenesis of Alzheimer's disease (AD), but its role in cognition has been relatively little studied. APP knockout (KO) animals have been described previously and show deficits in grip strength, reduced locomotor activity and impaired learning and memory in a conditioned avoidance test and the Morris water-maze. In order to further investigate the in vivo function of APP and its proteolytic derivatives, we tested APP KO mice and age-matched wild type controls at two different ages, 3 and 8 months, in a range of behavioural tests measuring neuromuscular, locomotor and cognitive functions. These tests included the acquisition of a passive avoidance response as a measure of long-term memory of an aversive experience, and spontaneous alternation in a Y-maze, regarded as a measure of spatial short-term memory. The absence of APP expression in APP KO mice was confirmed at the protein level using hippocampal tissue in Western blotting. APP KO mice displayed deficits in forelimb grip strength and locomotor activity in agreement with previous studies. In the Y-maze test used for spontaneous alternation behaviour, APP KO animals did not exhibit reduced alternation rates. On the other hand, in the passive avoidance test, APP KO mice showed an age-related deficit in retention of memory for an aversive experience. The results suggest that APP and/or its proteolytic derivatives may play a role in long-term memory in adult brain and/or may be required during the development and maintenance of neuronal networks involved in this type of memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2007.08.003 | DOI Listing |
Alzheimers Dement
December 2024
VIB-UGent Center for Inflammation Research, Ghent, Belgium.
Background: The brain is shielded from the peripheral circulation by central nervous system (CNS) barriers, comprising the well-known blood-brain barrier (BBB) and the less recognized blood-cerebrospinal fluid (CSF) barrier located within the brain ventricles. The gut microbiota represents a diverse and dynamic population of microorganisms that can influence the health of the host, including the development of neurological disorders like Alzheimer's disease (AD). However, the intricate mechanisms governing the interplay between the gut and brain remain elusive, and the means by which gut-derived signals traverse the CNS barriers remain unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Neurosciences, University of Barcelona, Barcelona, Catalunya, Spain.
Background: Senescence is a cellular response to stress or damage leading to a state of irreversible growth arrest. As we age, the number of senescent cells increases and directly contributes to age-related conditions including cancer and neurodegenerative diseases. As a result, there is a growing interest to therapeutically target senescence either with drugs eliminating senescent cells (senolytics) or with strategies to modulate their secretory phenotype among others.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.
Background: Alzheimer's disease (AD) is associated with synaptic and memory dysfunction. A pathological hallmark of the disease is reactive astrogliosis, with reactive astrocytes surrounding amyloid plaques in the brain. Astrocytes have also been shown to be actively involved in disease progression, nevertheless, mechanistic information about their role in synaptic transmission during AD pathology is lacking.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
Background: Compelling evidence has shown that long non-coding RNAs (lncRNAs) contribute to Alzheimer's disease (AD) pathogenesis including β-amyloid plaque deposition (Aβ) and intracellular neurofibrillary tangles. In this study, we aimed to investigate the critical role of lncRNA Gm20063 in AD.
Method: Six-month-old male APP/PS1 transgenic mice and wild type (WT) C57BL/6 (B6) littermates were obtained from the Nanjing University Animal Model Research Center.
Alzheimers Dement
December 2024
Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio De Janeiro, Rio de Janeiro, Brazil.
Background: Alzheimer's disease (AD) is the leading cause of dementia in elderly humans worldwide. More than 40 million people currently suffer from AD, and this prevalence tends to increase considerably in the coming decades due to increased longevity. The unfolded protein response (UPR) is an adaptive signaling mechanism that aims to maintain cell viability under misfolded protein accumulation and endoplasmic reticulum stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!