Peripheral inflammation increases Scya2 expression in sensory ganglia and cytokine and endothelial related gene expression in inflamed tissue.

J Neurochem

Neurobiology and Pain Therapeutics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.

Published: November 2007

The sensation of pain (nociception) is a critical factor in host defense during tissue injury and inflammation and is initiated at the site of injury by activation of primary afferent C-fiber and A- partial differential nerve endings. Inflammation induces tissue alterations that sensitize these nociceptive nerve terminals, contributing to persistent pain. To understand this 'algesic tissue environment' and peripheral nervous signaling to the CNS and immune system, we examined cytokine and endothelial-related gene expression profiles in inflamed rat tissues and corresponding dorsal root ganglia (DRG) by microarray and RT-PCR following hind paw injection of carrageenan. In inflamed tissue, forty-two cytokine and endothelial-related genes exhibited elevated expression. In contrast, in DRG, only Scya2 (chemokine C-C motif ligand 2) mRNA was up-regulated, leading to an increase in its gene product monocyte chemoattractant protein-1. Scya2 mRNA was localized by in situ hybridization-immunocytochemical double-labeling to a subpopulation of vanilloid receptor-1 (transient receptor potential vanilloid subtype 1) containing neurons, and its expression was increased by direct transient receptor potential vanilloid subtype 1 stimulation with the vanilloid agonist resiniferatoxin, indicating sensitivity to nociceptive afferent activity. Our results are consistent with the idea that monocyte chemoattractant protein-1 at the site of peripheral injury and/or in DRG is involved in inflammatory hyperalgesia.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2007.04874.xDOI Listing

Publication Analysis

Top Keywords

gene expression
8
inflamed tissue
8
cytokine endothelial-related
8
monocyte chemoattractant
8
chemoattractant protein-1
8
transient receptor
8
receptor potential
8
potential vanilloid
8
vanilloid subtype
8
expression
5

Similar Publications

Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.

View Article and Find Full Text PDF

Abundant repressor binding sites in human enhancers are associated with the fine-tuning of gene regulation.

iScience

January 2025

Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.

The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.

View Article and Find Full Text PDF

Primitive to visceral endoderm maturation is essential for mouse epiblast survival beyond implantation.

iScience

January 2025

Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.

The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.

View Article and Find Full Text PDF

A Novel COL7A1 Mutation in a Patient With Dystrophic Epidermolysis Bullosa. Successful Treatment With Upadacitinib.

Clin Cosmet Investig Dermatol

January 2025

Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People's Republic of China.

Dystrophic epidermolysis bullosa (DEB) is a heterogeneous and rare genetic skin disease caused by mutations in the gene, which encodes Type VII collagen. The absence or dysfunction of Type VII collagen can cause the dense lower layer of the basal membrane zone of the skin to separate from the dermis, leading to blister formation and various complications. In different DEB subtypes, the severity of the phenotype is associated, to some extent, with the outcome of Type VII collagen caused by mutations in the gene, which may be reduced in expression, remarkably reduced, or completely absent.

View Article and Find Full Text PDF

Background: Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by inflammation of the sacroiliac joints and spine. Cuproptosis is a newly recognized copper-induced cell death mechanism. Our study explored the novel role of cuproptosis-related genes (CRGs) in AS, focusing on immune cell infiltration and molecular clustering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!