A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Factor Va, bound to microparticles released during platelet storage, is resistant to inactivation by activated protein C. | LitMetric

Background: Microparticles (MPs) support coagulation and can be helpful in restoring the hemostatic system in thrombocytopenic patients. The anticoagulant properties of MPs shed during storage of platelets (PLTs) have not been studied yet.

Study Design And Methods: Storage-induced MPs were harvested from outdated PLT concentrates. Whether factor (F)Va was present on the surface of these MPs was investigated. The activated protein C (APC)-catalyzed inactivation of MP-bound FVa was further determined. Also, inactivation of FVa at the surface of thrombin-activated PLTs and synthetic vesicles was determined.

Results: MPs in stored PLT products carry FVa at their surface. APC-catalyzed inactivation of MP-bound FVa resulted in 42 +/- 2 percent residual FVa activity after 20 minutes. The residual activity of FVa on thrombin-activated PLTs was 25 +/- 3 percent. Plasma-derived FVa was rapidly inactivated in the presence of synthetic vesicles, with 5 +/- 4 percent residual FVa activity. When synthetic vesicles were added to the inactivation mixture of MP- or thrombin-activated PLTs, a residual activity of 5 to 10 percent was found. Furthermore, addition of excess plasma-FVa to storage-induced MPs resulted in a residual activity of 26 +/- 2 percent. Moreover, the APC-resistant phenotype of MPs was confirmed in plasma in which thrombin generation was measured in the absence and presence of APC. Residual FVa activity in the presence of MPs, PLTs, or synthetic vesicles was 87 +/- 6, 65 +/- 3, and 8 +/- 19 percent, respectively.

Conclusion: Together, these results suggest that the MP surface environment renders FVa resistant to APC. It is further concluded that the APC resistance of FVa at the surface of storage-induced MPs enhances their procoagulant nature.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1537-2995.2007.01411.xDOI Listing

Publication Analysis

Top Keywords

+/- percent
20
fva surface
16
synthetic vesicles
16
storage-induced mps
12
fva
12
thrombin-activated plts
12
residual fva
12
fva activity
12
residual activity
12
mps
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!