The centric diatom Pleurosira laevis is a large unicellular alga, in which ca 200 chloroplasts migrate toward the nuclear cytoplasm through the transvacuolar cytoplasmic strands in response to blue-light irradiation and, on the contrary, toward the cortical cytoplasm in response to green-light irradiation. We analyzed these light-induced chloroplast migrations using a scanning laser microbeam provided by a confocal microscope for intracellular irradiation. Spot irradiation of a blue laser microbeam induced rapid assemblage of chroloplasts into the nuclear cytoplasm regardless of the spot position and spot number. On the other hand, one or two spots of green laser microbeam induced chloroplast accumulation at the spots, although increasing spot numbers suppressed chloroplast accumulation at each spot. In our experimental condition, ca 1 min of blue-light irradiation was sufficient to stimulate movement, whereas green-light irradiation required uninterrupted and longer irradiation time (ca 15 min). Chloroplast assemblage induced by blue-light required extracellular Ca2+, and was inhibited by Ca2+ channel antagonists. Furthermore, higher efficiencies of chloroplast migration were obtained when a single beam spot was fragmented and scattered over wider area of plasma membrane. These observations suggested that blue-light induced a response at the plasma membrane, which subsequently activated Ca2+ permeable channels. This sequence of physiological events is identical to what was previously observed with chloroplast movement in response to mechanical stimulation. Furthermore, experiments with the cytoskeleton-disrupting agents, colchicine and cytochalasin D, indicated that blue-light-induced chloroplast movement required microtubules whereas the green-light-induced response to beam spot required actin filaments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1751-1097.2007.00167.x | DOI Listing |
Sci Rep
November 2024
Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
The sensitivity of radiochromic films to UV-blue light is increasingly considered for light dosimetry purposes, owing to their bidimensional detection capabilities and ease of use. While film response to radiation intensity has been widely investigated by commercial scanners, spatial resolution studies remain scarce, especially for small field-of-view applications. These are of growing interest due to the antimicrobial or photo-bio-stimulating effects of UV-blue light sources in in vitro, ex vivo and in vivo models, where precise knowledge of irradiation conditions with adequate spatial resolution is crucial.
View Article and Find Full Text PDFActa Biomater
November 2024
Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States; Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697-2580, United States; Beckman Laser Institute, University of California Irvine, Irvine, CA 92697-3010, United States. Electronic address:
We introduce a method utilizing single laser-generated cavitation bubbles to stimulate cellular mechanotransduction in dermal fibroblasts embedded within 3D hydrogels. We demonstrate that fibroblasts embedded in either amorphous or fibrillar hydrogels engage in Ca signaling following exposure to an impulsive mechanical stimulus provided by a single 250 µm diameter laser-generated cavitation bubble. We find that the spatial extent of the cellular signaling is larger for cells embedded within a fibrous collagen hydrogel as compared to those embedded within an amorphous polyvinyl alcohol polymer (SLO-PVA) hydrogel.
View Article and Find Full Text PDFMaterials (Basel)
September 2024
Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA.
In this paper, we demonstrate a method of measuring the flexural elastic modulus of ceramics at an intermediate (~millimeter) scale at high temperatures. We used a picosecond laser to precisely cut microbeams from the location of interest in a bulk ceramic. They had a cross-section of approximately 100 μm × 300 μm and a length of ~1 cm.
View Article and Find Full Text PDFJ Am Acad Dermatol
January 2025
Blossom Innovations, Waltham, Massachusetts; Department of Dermatology, Wellman Laboratories of Photomedicine, Harvard Medical School, Boston, Massachusetts.
Background: Selective photothermolysis has limitations in efficacy and safety for dermal targets. We describe a novel concept using scanned focused laser microbeams for precise control of dermal depth and pattern of injury, using a 1550 nm laser that generates an array of conical thermal zones while minimizing injury to the epidermis.
Objective: To characterize the conical thermal zones in vivo and determine safe starting parameters to transition to a second phase to explore potential clinical indications.
Bioconjug Chem
September 2024
Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China.
A porphyrin-containing nanoscale covalent organic polymer (COP) was fabricated from 5,10,15,20-tetra(4-carboxyphenyl)porphyrin (TCPP) and cystamine via an acylation reaction. On the one hand, TCPP can induce tumor cell death by laser irradiation. Due to the presence of disulfide bonds of cystamine which can react with glutathione, it exhibits depletion of glutathione and accumulation of peroxides in tumor cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!