A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

YfaE, a ferredoxin involved in diferric-tyrosyl radical maintenance in Escherichia coli ribonucleotide reductase. | LitMetric

Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides in all organisms. The class I RNRs are composed of a 1:1 complex of two homodimeric subunits: alpha and beta. beta contains the diferric-tyrosyl radical (Y*) cofactor essential for the reduction process. In vivo, the mechanism of Y* regeneration from the diferric-beta2 (met-beta2) or apo-beta2 is still unclear. Y* regenerations from met-beta2 and apo-beta2 have been designated the maintenance and biosynthetic pathways, respectively. To understand these two pathways, 181 genomes that contain nrdAnrdB (genes encoding alpha and beta) were examined. In 29% of the cases, an open reading frame annotated 2Fe2S ferredoxin (YfaE in Escherichia coli) is located next to nrdB. Thus, YfaE has been cloned, expressed, resolubilized, reconstituted anaerobically with Fe2+, Fe3+, and S2-, and characterized by Mössbauer, EPR, and visible spectroscopies. Titration of met-beta2 with [2Fe2S]1+-YfaE anaerobically results in the formation of an equilibrium mixture of diferrous-beta2 and [2Fe2S]2+-YfaE with one Fe reduced/YfaE oxidized. At the end point of the titration, O2 is added to the mixture and the diferrous-beta2 rapidly undergoes reaction to form the diferric-Y* with a stoichiometry of 2Fe/Y* and a specific activity correlated to the amount of Y*. The reducing equivalent required for diferric-Y* cofactor biosynthesis is supplied by beta. Under anaerobic conditions, stopped flow kinetics have been used to monitor the disappearance of the diferric cluster and the formation of [2Fe2S]2+-YfaE. The titrations and kinetic studies provide the first evidence for a protein involved in the maintenance pathway and likely the biosynthetic pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi7012454DOI Listing

Publication Analysis

Top Keywords

diferric-tyrosyl radical
8
escherichia coli
8
alpha beta
8
met-beta2 apo-beta2
8
mixture diferrous-beta2
8
yfae ferredoxin
4
ferredoxin involved
4
involved diferric-tyrosyl
4
radical maintenance
4
maintenance escherichia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!